RESUMO
Carbon dots (CDs) derived from mandarin peel biochar (MBC) at different pyrolysis temperatures (200, 400, 600, and 800 °C) have been synthesized and characterized. This high-value transformation of waste materials into fluorescent nanoprobes for environmental monitoring represents a step forward towards a circular economy. In this itinerary, CDs produced via one-pot hydrothermal synthesis were utilized for the detection of copper (II) ions. The study looked at the spectroscopic features of biochar-derived CDs. The selectivity of CDs obtained from biochar following carbonization at 400 °C (MBC400-CDs towards various heavy metal ions resulted in considerable fluorescence quenching with copper (II) ions, showcasing their potential as selective detectors. Transmission electron microscopic (TEM) analysis validated the MBC-CDs' consistent spherical shape, with a particle size of <3 nm. The Plackett-Burman Design (PBD) was used to study three elements that influence the F0/F ratio, with the best ratio obtained with a pH of 10, for 10 min, and an aqueous reaction medium. Cu (II) was detected over a dynamic range of 4.9-197.5 µM and limit of detection (LOD) of 0.01 µM. Validation testing proved the accuracy and precision for evaluating tap and mountain waters with great selectivity and no interference from coexisting metal ions.
RESUMO
Living in diverse environmentally harsh conditions, the plant exhibits a unique survival mechanism. As a result, the endophytes residing within the plant produce specific compounds that promote the plant's growth and defend it against pathogens. Plants and algae symbiotically harbor endophytes, i.e., microbes and microorganisms living within them. The objective of this study is to isolate endophytic fungi, specifically strains of Aspergillus terreus, from the leaves of the salt-tolerant plant Tetraena qatarensis and to explore the salt tolerance, antagonistic activity, and growth promotion properties. Strain C A. terreus (ON117337.1) was screened for salt tolerance and antagonistic effects. Regarding salt tolerance, the isolate demonstrated the ability to thrive in a concentration of up to 10% NaCl. A. terreus showed inhibitory activity against four fungal phytopathogens, namely Fusarium oxysporum, Alternaria alternata, Colletotrichum gloeosporioides, and Botrytis cinerea. The GC-MS investigation of the fungal (strain C Aspergillus terreus) extract showed the presence of about 66 compounds (secondary metabolites). Secondary metabolites (SMs) are produced, like Hexadecanoic acid, which aids in controlling phytopathogens. Also produced is lovastatin, which is used to treat hypercholesterolemia. Strain C, which showed salinity tolerance and the highest inhibitory activity, was further analyzed for its effect on tomato seed germination under pathogen stress from Fusarium oxysporum. The greenhouse experiment indicated that the fungi increased the length of tomato seedlings and the plant biomass. Therefore, the selected endophytes derived from Tetraena qatarensis were scrutinized for their potential as biocontrol agents, aiming to thwart fungal pathogens and stimulate plant growth. The in vitro and in vivo assessments of strain C (Aspergillus terreus) against Fusarium oxysporum in this investigation indicate the promising role of endophytes as effective biological control agents. Investigating novel bio-products offers a sustainable approach to agriculture, gradually reducing dependence on chemical fungicides.
RESUMO
Microbial infections, particularly those caused by antibiotic-resistant pathogens, pose a critical global health threat. Metal-Organic Frameworks (MOFs), porous crystalline structures built from metal ions and organic linkers, initially developed for gas adsorption, have emerged as promising alternatives to traditional antibiotics. This review, covering research up to 2023, explores the potential of MOFs and MOF-based materials as broad-spectrum antimicrobial agents against bacteria, viruses, fungi, and even parasites. It delves into the historical context of antimicrobial agents, recent advancements in MOF research, and the diverse synthesis techniques employed for their production. Furthermore, the review comprehensively analyzes the mechanisms of action by which MOFs combat various microbial threats. By highlighting the vast potential of MOFs, their diverse synthesis methods, and their effectiveness against various pathogens, this study underscores their potential as a novel solution to the growing challenge of antibiotic resistance.
RESUMO
Pesticides are used in agriculture to protect crops from pathogens, insects, fungi and weeds, but the release of pesticides into surface/groundwater by agriculture runoff and rain has raised serious concerns not only for the environment but also for human health. This study aimed to investigate the impact of surface properties on the performance of seven distinct membrane types utilized in nanofiltration (NF), reverse osmosis (RO) and forward osmosis (FO) processes in eliminating multiple pesticides from spiked water. Out of the membranes tested, two are self-fabricated RO membranes while the rest are commercially available membranes. Our results revealed that the self-fabricated RO membranes performed better than other commercial membranes (e.g., SW30XLE, NF270, Duracid and FO) in rejecting the targeted pesticides by achieving at least 99% rejections regardless of the size of pesticides and their log Kow value. Despite the marginally lower water flux exhibited by the self-fabricated membrane compared to the commercial BW30 membrane, its exceptional ability to reject both mono- and divalent salts renders it more apt for treating water sources containing not only pesticides but also various dissolved ions. The enhanced performance of the self-fabricated RO membrane is mainly attributed to the presence of a hydrophilic interlayer (between the polyamide layer and substrate) and the incorporation of hydrophilic nanosheets in tuning its surface characteristics. The findings of the work provide insight into the importance of membrane surface modification for the application of not only the desalination process but also for the removal of contaminants of emerging concern.
Assuntos
Filtração , Membranas Artificiais , Osmose , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Praguicidas/análise , Praguicidas/química , Praguicidas/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Filtração/métodos , Interações Hidrofóbicas e HidrofílicasRESUMO
This work investigates the biodegradation of polyethylene (PE) and low-density polyethylene (LDPE) and the leaching of their harmful additives. Micro/macro-plastics of both types were subjected to different laboratory-controlled conditions for 3 months. Gas Chromatography-Mass Spectroscopy (GC-MS) results revealed that leachate concentrations ranged from 0.40 ± 0.07 µg/L to 96.36 ± 0.11 µg/L. It was concluded that the additives' leaching process was promoted by light. However, light was not the only factor examined; microorganisms, pH, salinity, aeration/mixing and temperature influenced the biodegradation process, too. GC-MS results showed a prodigious impact on the biodegradation process when Pseudomonas aeruginosa was added to the artificial seawater compared to plastics exposed to light/air only. Scanning Electron Microscopy (SEM) micrographs demonstrated a significant alteration in the plastics' morphologies. Similarly, Fourier-Transform Infrared Spectroscopy (FTIR) spectra showed obvious changes in plastics characteristic peaks, especially microplastics. Furthermore, it was shown that PE was more susceptible to degradation/biodegradation than LDPE. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) findings showed that some toxic metals were present in water samples after experiments, with concentrations above the permissible limits. For instance, bio-augmentation/bio-stimulation experiments showed that the concentrations of Pb, Sr, and Zn were 0.59 mg/L, 70.09 mg/L, and 0.17 mg/L, respectively; values above the permissible limits. It is crucial to emphasise that plastics must be meticulously engineered to avoid environmental and human impacts, originated from their degradation by-products. Furthermore, a holistic approach engaging stakeholders, researchers, policymakers, industries and consumers, is essential to effectively tackle the global challenge of marine plastic pollution.
Assuntos
Plásticos , Polietileno , Humanos , Polietileno/metabolismo , Plásticos/química , Água do Mar/química , Microscopia Eletrônica de Varredura , Biodegradação AmbientalRESUMO
Plant growth promoting rhizobacteria are a diverse group of microorganisms that enhance the growth of plants under various conditions. In this study, 55 isolates of endogenous rhizobacteria were collected from the rhizosphere of Avicennia marina, Suaeda vermiculata, Salsola soda, Anabasis setifera, Salicornia europaea, Arthrocnemum macrostachyum, Limonium axillare, Tetraena qatarensis, Aeluropus lagopoides, and Prosopis juliflora. The isolates were evaluated in-vitro for their antagonist potential against Fusarium oxysporum and Botrytis cinerea using the dual culture technique, where the maximum growth inhibition reached 49% and 57%, respectively. In-vivo evaluation was accomplished to determine the growth-promoting potential of the rhizobacteria under greenhouse conditions where the strain ANABR3 (Bacillus subtilis) showed the strongest growth-promoting effects. Further in-vivo testing regarding the effectiveness of rhizobacteria in the presence of the phytopathogen was also completed using the Hoagland medium. LEMR3 and SALIR5 (both identified as two strains of B. subtilis) supported the tomato seedlings to overcome the disease and significantly (p ≤ 0.05) increased above and belowground biomass compared to the control. Additionally, several characterizing tests were carried out on the selected strains, these strains were found to possess numerous features that promote plant growth directly and indirectly such as the production of IAA, HCN, hydrolytic enzymes, ACC deaminase, NH3, and some rhizobacteria were capable of phosphate solubilization. In conclusion, this study showed that local rhizobacterial isolates collected from arid lands possess valuable traits, making them promising bio-control agents and bio-fertilizers for agricultural purposes.
Assuntos
Solo , Solanum lycopersicum , Fosfatos , Plântula , Agricultura , Microbiologia do SoloRESUMO
Gas-to-liquid (GTL) sludge is a specific wastewater treatment by-product, which is generated during the industrial process of natural gas conversion to transportation fuels. This least studied sludge is pathogen-free and rich in organic carbon and plant nutrients. Therefore, it can be reused for soil enhancement as a sustainable management strategy to mitigate landfill gas emissions. In this field study, we compared the performance of soil treatments with GTL sludge to the more conventional chemical fertilizers and cow manure compost for the cultivation of cotton under hyperarid conditions. After a complete growing season, GTL sludge application resulted in the enhancement of soil properties and plant growth compared to conventional inputs. As such, there was a significant dose-dependent increase of soil organic matter (4.01% and 4.54%), phosphorus (534 and 1090 mg kg-1), and cumulative lint yield (4.68 and 5.67 t ha-1) for GTL sludge application rates of 1.5% and 3%, respectively. The produced fiber quality was adequate for an upland cotton variety (Gossypium hirsutum var. MAY 344) and appeared more dependent on the prevailing climate conditions than soil treatments. On the other hand, the adverse effects generally related to industrial sludge reuse were not significant and did not affect the designed agro-environmental system. Accordingly, plants grown on GTL sludge-amended soils showed lower antioxidant activity despite significant salinity increase. In addition, the concentrations of detected heavy metals in soil were within the standards' limits, which did not pose environmental issues under the described experimental conditions. Leachate analysis revealed no risks for groundwater contamination with phytotoxic metals, which were mostly retained by the soil matrix. Therefore, recycling GTL sludge as an organic amendment can be a sustainable solution to improve soil quality and lower carbon footprint. To reduce any environmental concerns, an application rate of 1.5% could be provisionally recommended since a two-fold increase in sludge dose did not result in a significant yield improvement.
Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Esgotos/química , Gossypium , Poluentes do Solo/análise , Carbono , Metais Pesados/análise , Fertilizantes/análiseRESUMO
This study investigates the leaching potential of several additives embedded in six different plastic types when exposed to extreme simulated marine conditions for 140 days. The findings achieved herein contribute to a better understanding of the impact of macro- and microplastics leaching harmful compounds (bisphenol A (BPA) and phthalates) in the marine environment when exposed to harsh climatic conditions. Leachability experiments showed that bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and BPA were detected in seawater (SW) samples. Furthermore, while analysing 100 mL of SW per each sample, the total leachate concentrations of the identified compounds ranged from 5 µg/L to 123 µg/L, after 140 days of exposing a total of 120 plastic samples (96 samples micro- and 24 macro-plastics) to SW conditions It was observed that the leaching of DEHP was promoted by wave abrasion, high temperature and sunlight, while the leaching of DBP was favoured by wave abrasion. Findings showed that polypropylene (PP) was the most attributable plastic type in the leaching of DBP with an average concentration of 5.3 µg/L, whereas high-density polyethylene (HDPE) was the most responsible plastic-type for the leaching of DEHP, with an average concentration of 123 µg/L. Our results suggest that most of the phthalates and BPA will, ultimately, leach out to the SW environment after a longer period.
RESUMO
Water and wastewater are contaminated with various types of trace elements that are released from industrial activities. Their presence, at concentrations above the permissible limit, will cause severe negative impacts on human health and the environment. Due to their cost-effectiveness, simple design, high efficiency, and selectivity, adsorption, and adsorptive filtration are techniques that have received lots of attention as compared to other water treatment techniques. Adsorption isotherms and kinetic studies help to understand the mechanisms of adsorption and adsorption rates, which can be used to develop and optimize different adsorbents. This state-of-the-art review provides and combines the advancements in different conventional and advanced adsorbents, biosorbents, and adsorptive membranes for the removal of trace elements from water streams. Herein, this review discusses the sources of different trace elements and their impact on human health. The review also covers the adsorption technique with a focus on various advanced adsorbents, their adsorption capacities, and adsorption isotherm modeling in detail. In addition, biosorption is critically discussed together with its mechanisms and biosorption isotherms. In the end, the application of various advanced adsorptive membranes is discussed and their comparison with adsorbents and biosorbents is systematically presented.
RESUMO
Fish constitutes an essential source of high-quality protein and is, at the same time, the source of exposure to many hazardous contaminants, namely mercury and methyl mercury (MeHg). This study aims at assessing the risk that MeHg poses to the health of adult Qatari residents through fish consumption. Data on fish consumption were collected using a self-administered online survey composed of three sections that collected information about the fish-eating patterns of the participants. The fish species that were reported to be consumed by ≥ 3% of the respondents were sampled and analyzed for their total mercury (T-Hg) content levels. MeHg concentrations were derived from T-Hg content levels using a scenario-based approach. Disaggregated fish consumption and contamination data were combined using the deterministic approach to estimate MeHg intakes. The average, 75th, and 95th percentiles of the MeHg intake estimates were determined and compared to the tolerable weekly intake (TWI) set by the European Food Safety Agency (EFSA) (1.3 µg·kg-1·w-1). All fish samples contained T-Hg at levels Ë 0.3-0.5 µg/g with a mean value of 0.077 µg/g. The study population had an average fish consumption of 736.0 g/week. The average estimated weekly intakes of MeHg exceeded TWI for some fish consumers including females of childbearing age and those following a high-protein diet. Our study highlights the need to establish regulatory guidelines and dietary advice based on risk/benefit ratio.
Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Feminino , Humanos , Monitoramento Ambiental , Contaminação de Alimentos/análise , Compostos de Metilmercúrio/análise , Mercúrio/análise , Peixes/metabolismo , Medição de Risco , Alimentos MarinhosRESUMO
This study investigates the mercury (Hg) levels distribution in fish and fish products and their relationships with fish types, weights, protein, and lipid contents in Qatar. Principal component analysis (PCA) was employed to analyze the influence of lipids and protein content on Hg accumulation in the fish tissues. Additionally, the impact of Hg concentration and fish consumption on the estimated weekly intake (EWI). The PCA results showed that Hg contamination levels are primarily affected by protein-lipid content in predatory species. The results showed that high lipid content reflected lower Hg levels and that high Hg levels in fish with high lipid content indicated a polluted environment. The finding of the PCA of EWI, consumption, and Mercury concentration indicate that EWI is highly correlated to Mercury concentration except in the case of low Mercury concentration.
Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Produtos Pesqueiros/análise , Peixes/metabolismo , Contaminação de Alimentos/análise , Análise Multivariada , Lipídeos/análise , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
This study aims to prepare an ion-imprinted polymer (IIP) using copper sulfate as a template and potassium persulfate as an initiator to selectively adsorb copper ions (Cu2+) from aqueous solutions and in an attempt to also test its applicability for removing strontium ions (Sr2+). The prepared polymer was denoted by IIP-Cu. Various physical and chemical characterizations were performed for the prepared IIP-Cu. The scanning electron microscopy and transmission electron microscopy analyses confirmed the cavities formed after the removal of the template. It also indicated that the IIP-Cu had a rough and porous topology. The X-ray photoelectron spectroscopy confirmed the successful removal of the Cu template from IIP-Cu. The Brunauer-Emmet-Teller revealed that the surface area of IIP-Cu is as high as 152.3 m2/g while the pore radius is 8.51 nm. The effect of pH indicated that the maximum adsorption of Cu2+ was achieved at pH 8 with 98.7%. Isotherm studies revealed that the adsorption of Cu2+ was best explained using Langmuir models with a maximum adsorption capacity of 159 mg/g. The effect of temperature revealed that an increase in temperature had an adverse impact on Cu2+ removal from the aqueous solution, which was further confirmed by thermodynamic studies. The negative value of standard enthalpy change (-4.641 kJ/mol) revealed that the adsorption of Cu2+ onto IIP-Cu was exothermic. While the continuous increase in Gibbs free energy from -6776 kJ/mol to -8385 kJ/mol with the increase in temperature indicated that the adsorption process was spontaneous and feasible. Lastly, the positive value of the standard entropy change (0.023 J/mol.K) suggested that the Cu2+ adsorption onto IIP-Cu had a good affinity at the solid-liquid surface. The efficiency of the prepared IIP-Cu was also tested by studying the adsorption capacity using Sr2+ and real brine water. The results revealed that IIP-Cu was able to remove 63.57% of Sr2+ at pH 8. While the adsorption studies revealed that the experiment was best described using the Langmuir model with a maximum adsorption capacity of 76.92 mg/g. Additionally, IIP-Cu was applied in a real brine sample, which consisted of various metal ions. The highest percentage of Cu2+ removal was 90.6% and the lowest was 65.63% in 1:4 and 1:1 brine ratios, respectively. However, this study indicates the successful application of IIP-Cu in a real sample when it comes to the effective and efficient removal of Cu2+ in a solution consisting of various competing ions.
Assuntos
Cobre , Poluentes Químicos da Água , Cobre/química , Polímeros/química , Íons , Osmose , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/químicaRESUMO
Plastics possess diverse functional properties that have made them extremely desirable. However, due to poor waste management practices, large quantities eventually end up in the oceans where their degradation begins. Hence, it is imperative to understand and further investigate the dynamics of this process. Currently, most relevant studies have been carried out under benign and/or controlled weather conditions. This study investigates the natural degradation of polypropylene (PP) and polyethylene terephthalate (PET) in more extreme environments. Simulated and real marine conditions, both in the laboratory (indoors) and outdoors were applied for a duration of 140 days and results were assessed using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis. SEM micrographs revealed variations in the morphologies of both plastic types. Degradation signs were shown in both plastic types, under all conditions. Findings indicated that microplastics (MPs) degraded faster than macroplastics, with PP MPs having higher weight loss (49%) than PET MPs (1%) when exposed to outdoor marine conditions. Additionally, the degradation rates of MPs-PP were higher than MPs-PET for outdoor and indoor treatments, with 1.07 × 10-6 g/d and 4.41 × 10-7 g/d, respectively. FTIR combined with PCA was efficient in determining the most degraded plastic types.
RESUMO
In this study, three types of adsorbents were used to remove and recover strontium ions (Sr2+) from aqueous and brine solution of seawater reverse osmosis (SWRO), namely roasted date pits (RDP) and RDP modified using copper and nickel salts of potassium hexacyanoferrates to obtain RDP-FC-Cu, and RDP-FC-Ni, respectively. Additionally, the influence of various parameters, including pH, temperature, initial concentration, and co-existing ions was also evaluated. The results revealed that pH 10 was the optimum pH in which the maximum Sr2+ ions were adsorbed. Additionally, all adsorbents had a high adsorption capacity (99.9 mg/g) for removing Sr2+ ions at the highest concentration (100 mg/L) and a temperature of 45 °C was found to be the optimum temperature. A scanning electron microscopy for the adsorbents before and after the adsorption of strontium showed the remarkable pore filling onto the active sites of all adsorbents. The thermodynamics parameter demonstrated that the adsorption occurred in an endothermic environment, and that, the reaction was spontaneous, and favorable at all the temperatures investigated. According to isotherm studies, the Langmuir model was the best-fit isotherm model; indicating that strontium adsorption involved the formation of monolayers and multilayers at higher temperatures (45 °C). Furthermore, high desorption percentages (above 90%) were achieved for all the adsorbents when an HCl concentration of 0.5 M was used. This showed the high reusability of the adsorbents. Lastly, the adsorption of strontium from the SWRO brine containing a number of metal ions was extremely sufficient as all the adsorbents were efficient to adsorb a high amount of Sr2+ despite the presence of other competing ions.
Assuntos
Sais , Poluentes Químicos da Água , Estrôncio/química , Ferrocianetos , Água do Mar , Osmose , Adsorção , Cinética , Íons , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análiseRESUMO
Soil lead (Pb) contamination is one of the environmental problems facing the modern world. Sources of Pb in soil include industrial activities such as mining and smelting processes, agricultural activities such as application of insecticide and municipal sewage sludges, and urban activities such as use of lead in gasoline, paints, and other materials. Phytoremediation is the direct use of living green plants and is an effective, cheap, non-invasive, and environmentally friendly technique used to transfer or stabilize all the toxic metals and environmental pollutants in polluted soil or groundwater. Current work in this area is invested in elucidating mechanisms that underpin toxic-metal tolerance and detoxification mechanisms. The present study aims to gain insight into the mechanisms of Pb tolerance in T. qataranse by comparative proteomics. MALDI-TOF/MS and in silico proteome analysis showed differential protein expression between treated (50 mg kgâ¯1 Pb) and untreated (0 mg kgâ¯1 Pb) T. qataranse. A total of eighty-six (86) differentially expressed proteins, most of which function in ion and protein binding, antioxidant activity, transport, and abiotic response stress, were identified. In addition, essential stress-regulating metabolic pathways, including glutathione metabolism, cellular response to stress, and regulation of HSF1-mediated heat shock response, were also enriched. Also, at 52- and 49-kDa MW band areas, up to six hypothetical proteins with unknown functions were identified. Of these, protein AXX17_AT2G26660 is highly rich in glycine amino acid residues (up to 76%), suggesting that it is a probable glycine-rich protein (GRP) member. Although GRPs are known to be involved in plant defense against abiotic stress, including salinity and drought, there is no report on their role on Pb tolerance and or detoxification in plants. Further enrichment analysis in the current study reveals that the hypothetical proteins do not interact with known proteins and are not part of any enriched pathway. However, additional research is needed to functionally validate the role of the identified proteins in Pb detoxification mechanism.
RESUMO
It has been demonstrated that biostimulation is necessary to investigate the interactions between indigenous bacteria and establish an approach for the bioremediation of soils contaminated with weathered oil. This was achieved by adjusting the carbon (C)/nitrogen (N)/phosphorus (P) ratio to 100/10/1 combined with the application of 0.8 mL/kg Tween-80. In addition, three indigenous bacteria isolated from the same soil were introduced solely or combined concomitantly with stimulation. Removal of n-alkanes and the ratios of n-heptadecane to pristane and n-octadecane to phytane were taken to indicate their biodegradation performance over a period of 16 weeks. One strain of Pseudomonas aeruginosa D7S1 improved the efficiency of the process of stimulation. However, another Pseudomonas aeruginosa, D5D1, inhibited the overall process when combined with other bacteria. One strain of Bacillus licheniformis D1D2 did not affect the process significantly. The Fourier transform infrared analysis of the residual hydrocarbons supported the conclusions pertaining to the biodegradation processes when probing the modifications in densities and stretching. The indigenous bacteria cannot mutually benefit from their metabolisms for bioremediation if augmented artificially. However, the strain Pseudomonas. aeruginosa D7S1 was able to perform better alone than in a consortium of indigenous bacteria.
RESUMO
Calcium carbonate, one of the most abundant minerals in the geological records is considered as primary source of the carbon reservoir. The role of microorganisms in the biotic precipitation of calcium carbonate has been extensively investigated, especially at extreme life conditions. In Qatar, Sabkhas which are microbial ecosystems housing biomineralizing bacteria, have been carefully studied as unique sites of microbial dolomite formation. Dolomite (CaMg(CO3)2 is an important carbonate mineral forming oil reservoir rocks; however, dolomite is rarely formed in modern environments. The enzyme carbonic anhydrase is present in many living organisms, performs interconversion between CO2 and the bicarbonate ion. Thus, carbonic anhydrase is expected to accelerate both carbonate rock dissolution and CO2 uptake at the same time, serving as carbonite source to carbonites-forming bacteria. This study gathered cross-linked data on the potential role of the carbonic anhydrase excreted by mineral-forming bacteria, isolated from two different extreme environments in Qatar. Dohat Faishakh Sabkha, is a hypersaline coastal Sabkha, from where various strains of the bacterium Virgibacillus were isolated. Virgibacillus can -not only-mediate carbonate mineral formation, but also contributes to magnesium incorporation into the carbonate minerals, leading to the formation of high magnesium calcite. The latter is considered as precursor for dolomite formation. In addition, bacterial strains isolated from marine sediments, surrounding coral reef in Qatar sea, would provide additional knowledge on the role of carbonic anhydrase in mineral formation. Here, the quantification of the two mostly described activities of carbonic anhydrase; esterase and hydration reactions were performed. Mineral-forming strains were shown to exhibit high activities as opposed to the non-forming minerals, which confirms the relation between the presence of active carbonic anhydrase combined with elevated metabolic activity and the biomineralizing potential of the bacterial strains. The highest specific intracellular carbonic anhydrase activity; as both esterase and hydration (i.e., 66 ± 3 and 583000 ± 39000 WAU/108 cells respectively), was evidenced in mineral-forming strains as opposed to non-mineral forming strains (i.e., 6 ±. 0.5 and 1223 ± 61 WAU/108cells) respectively. These findings would contribute to the understanding of the mechanism of microbially mediated carbonate precipitation. This role may be both in capturing CO2 as source of carbonate, and partial solubilization of the formed minerals allowing incorporation of Mg instead of calcium, before catalyzing again the formation of more deposition of carbonates.
RESUMO
Reverse osmosis (RO) is affected by multiple types of fouling such as biofouling, scaling, and organic fouling. Therefore, a multi-functional membrane capable of reducing more than one type of fouling is a need of the hour. The polyacrylic acid and graphene oxide (PAA-GO) nanocomposite functionalization of the RO membrane has shown its effectiveness against both mineral scaling and biofouling. In this research, the polyacrylic acid concentration and irradiation times were optimized for the PAA-GO-coated RO membrane using the response surface methodology (RSM) approach. The effect of these parameters on pure water permeability and salt rejection was investigated. The models were developed through the design of the experiment (DoE), which were further validated through the analysis of variance (ANOVA). The optimum conditions were found to be: 11.41 mg·L-1 (acrylic acid concentration) and 28.08 min (UV activation times) with the predicted results of 2.12 LMH·bar-1 and 98.5% NaCl rejection. The optimized membrane was prepared as per the model conditions, which showed an increase in both pure water permeability and salt rejection as compared to the control. The improvement in membrane surface smoothness and hydrophilicity for the optimized membrane also helped to inhibit mineral scaling by 98%.
RESUMO
There is no doubt that infectious diseases present global impact on the economy, society, health, mental state, and even political aspects, causing a long-lasting dent, and the situation will surely worsen if and when the viral spread becomes out of control, as seen during the still ongoing coronavirus disease 2019 (COVID-19) pandemic. Despite the considerable achievements made in viral prevention and treatment, there are still significant challenges that can be overcome through careful understanding of the viral mechanism of action to establish common ground for innovating new preventative and treatment strategies. Viruses can be regarded as devil nanomachines, and one innovative approach to face and stop the spread of viral infections is the development of nanoparticles that can act similar to them as drug/vaccine carriers. Moreover, we can use the properties that different viruses have in designing nanoparticles that reassemble the virus conformational structures but that do not present the detrimental threats to human health that native viruses possess. This review discusses the current preventative strategies (i.e., vaccination) used in facing viral infections and the associated limitations, highlighting the importance of innovating new approaches to face viral infectious diseases and discussing the current nanoapplications in vaccine development and the challenges that still face the nanovaccine field.
Assuntos
COVID-19 , Vacinas Virais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Pandemias/prevenção & controle , SARS-CoV-2RESUMO
The occurrence of boron in low concentration is essential; however, a higher concentration of boron source in water has a toxic effect on humans as well as have retard effect on agricultural plant growth. Thus, the affordable and facile method to remediate water from higher boron concentrations is highly demanded. This report explores the ability of naturally occurring sustainable bio-waste os sepiae (cuttlefish bone, CFB) as an effective adsorbent for the removal of boron from water. Chemical activation of the os sepiae powder was examined to improve the efficiency of boron adsorption. A batch adsorption study for boron considering various parameters such as chemical modification of os sepiae, pH, initial boron concentration, and the temperature was scrutinized. Untreated (CFB), alkali-treated (CFB-D) and acid-treated (CFB-A) os sepiae powders were investigated and the adsorption capacities reached up to 53.8 ± 0.04 mg/g, 66.4 ± 0.02 mg/g and 69.8 ± 0.02 mg/g, respectively, at optimal pH 8 and 25 °C. Boron adsorption by CFB, CFB-D, and CFB-A were well fitted with the linear Freundlich adsorption isotherm model with a correlation coefficient of 99.4%, 99.8%, and 99.7% respectively. Thermodynamic parameters indicated that the adsorption of boron by CFB is an exothermic process and more feasible at a lower temperature around 25 °C. Moreover, detailed morphological and chemical characterization of the influence of adsorbed boron on adsorbents was conducted and discussed. The Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis spectra confirms the involvement of various functional groups including amino, carbonate (CO3)2-, and hydroxyl groups on the adsorbent in the adsorption mechanisms for boron removal. The results indicate that CFB can be an excellent example for the recycling and reuse of biowaste for water remediation.