Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Prosthodont ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38734933

RESUMO

PURPOSE: To evaluate the effect of different printing orientations and post-polymerization time with thermal cycling on the translucency of 3D-printed denture base resins. METHODS: Heat-polymerized (HP) acrylic resin specimens were fabricated and 3D-printed denture base materials (NextDent, ASIGA, FormLabs) were printed with different printing orientations (0, 45, 90 degrees) and subjected to different post-polymerization times (15-, 30-, 60-, and 90-min). All specimens were polished and immersed in distilled water for 1 day at 37°C. CIEDE2000 was used to measure the translucency parameters (TP00) before and after thermal cycling (5000 cycles) recording the color parameters (L*, a*, b*) against a black and white background using a spectrophotometer. k-factors ANOVA followed by post hoc Tukey's test (α = .05) was performed for statistical analysis. RESULTS: The k-factors ANOVA test showed a significant effect of resin material, post-polymerization time, and printing orientation on translucency (p < 0.001). In comparison to HP, all 3D-printed resins showed lower translucency with all post-polymerization times and printing orientation (p < 0.001) except FormLabs resin (p > 0.05). For all 3D-printed resins, the translucency increased, with increasing the post-polymerization time (p < 0.001) and 60- and 90-min showed the highest translucency. For printing orientation, 90 and 45 degrees significantly showed high translucency in comparison to 0 degrees (p < 0.001). FormLabs showed significantly higher translucency when compared with NextDent and ASIGA per respective printing orientation and post-polymerization time. The translucency significantly decreased after thermal cycling for all tested resins (p < 0.001). CONCLUSION: The findings of this study demonstrated that the translucency of 3D-printed resins is influenced by the printing orientation, post-polymerization time, and resin type. As a result, choosing a resin type, and printing orientation, with a longer post-polymerization time should be considered since it may improve the esthetic appearance of the 3D-printed resins.

2.
J Prosthodont ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403847

RESUMO

The aim of this report was to digitize traditional denture relining using a digital duplication method, in addition to assessing the wear resistance of three-dimensional (3D) printed denture teeth. A complete denture was relined using light body impression. The denture with impression was scanned yielding a standard tessellation language file that was designed to print the denture base and teeth. The printed teeth were fitted into the sockets of the printed denture base and then bonded using auto-polymerized acrylic resins, followed by finishing and polishing. Dentures were inserted and fit and occlusion were adjusted as needed, and the patient was scheduled for follow-up appointments at one week, three months, and six months. At each follow-up visit, dentures were scanned using a 3Shape E3 desktop scanner and scans were superimposed. The occlusal wear was assessed in reference to the first scan after the denture insertion visit. The accuracy of the intaglio surface of dentures was within clinically acceptable limits. The clinical evaluation of inserted dentures in terms of retention, occlusion, esthetic, and patient satisfaction was encouraging. Using digital duplication, conventional dentures could be relined. The advantages of digital records include eliminating polymerization dimensional changes, and reducing cost and clinical time by minimizing the number of visits, which is particularly helpful with geriatric patients.

3.
Eur J Dent ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086425

RESUMO

OBJECTIVE: The aim of this study was to evaluate the surface roughness, contact angle, and adhesion of Candida albicans to computer-aided designing/computer-aided manufacturing (CAD/CAM) and heat-polymerized (HP) denture base materials. MATERIALS AND METHODS: Specimens were allocated to six groups based on the composition of studied denture base materials, HP acrylic resin, milled resins (AvaDent and IvoCad), and 3D-printed resins (ASIGA, FormLabs, and NextDent). Ten specimens per group were used for each test (n = 10/test). Surface roughness and contact angles were analyzed using profilometer and goniometer, respectively. Adhesion of C. albicans was counted using colony-forming unit (CFU/mL). Means and standard deviations were calculated, and then one-way analysis of variance (ANOVA), followed by Tukey's post hoc test. Correlation of Candida adhesion and surface parameters was determined by using Pearson's correlation analysis. RESULTS: No statistically significant difference was noted in surface roughness between HP, milled, and 3D-printed denture base resins except NextDent, which showed significantly higher roughness in comparison to all other resins (p = 0.001). In terms of contact angle, milled resins had the lowest value, followed by HP, ASIGA, and FormLabs, whereas NextDent showed the highest contact angle (p = 0.001). C. albicans adhesion showed no significant difference between all denture base resins. A positive and significant correlation was found between C. albicans adhesion and contact angle (p = 0.003), while no correlation was reported between C. albicans adhesion and surface roughness (p = 0.523). CONCLUSION: Adhesion of C. albicans was similar in all tested specimens. Surface roughness showed no significant difference between all groups except NextDent, which had the highest value. Milled denture base resins had the lowest contact angle among all groups.

4.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676383

RESUMO

The aim of this study was to assess the influences of different CAD/CAM ceramic compositions and thicknesses on the surface roughness and hardness of ceramic restorations. Four different ceramics were used in the current study: lithium disilicate (LD), leucite reinforced (LE), advanced lithium disilicate (ALD), and zirconia-reinforced lithium silicate (ZLS). Each group included 30 specimens subdivided into three different ceramic thicknesses (0.5, 1 and 1.5 mm thicknesses). The microhardness was measured for all the specimens using a microhardness testing machine, while the surface roughness was measured using a non-contact optical profilometer at three intervals (before toothbrushing and after toothbrushing, with and without toothpaste). Three-way and two-way ANOVA were used to determine the factors influencing the surface roughness and microhardness. There was a significant difference in the surface roughness between the studied groups for all the thicknesses. The findings showed that ALD had the lowest surface roughness, while ZLS showed the highest surface roughness. Moreover, ALD, followed by ZLS, had the highest hardness, while LD and LE had the lowest hardness values. Regarding the thicknesses, both the 0.5 and 1 mm ceramic thicknesses showed a significantly lower surface roughness than the 1.5 mm thickness, while the 1.5 mm thickness showed a significantly higher microhardness than the 0.5 mm thickness. The surface roughness and hardness were significantly affected by the ceramic composition and type of filler. It is recommended to use 1.5 mm-thick ceramic materials for the fabrication of definitive full-coverage ceramic restorations, while veneers require 0.5 mm-thick materials. ALD is a promising CAD/CAM material that can be used for the fabrication of restorations with a proper strength in both anterior and posterior regions.

5.
Eur J Dent ; 17(1): 234-241, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35820440

RESUMO

OBJECTIVES: This study aimed to evaluate the influence of different salivary pH on flexural strength, hardness, and surface roughness of computer-aided design and computer-aided manufacturing (CAD/CAM) milled and three-dimensional (3D)-printed denture base resins. METHODS: One heat-polymerized, two CAD/CAM milled (IvoCad, AvaDent), and two 3D-printed (FormLabs, NextDent) denture base resins were fabricated and divided into five groups (n = 10) according to the solutions: three groups were immersed in different salivary pH (5.7, 7.0, or 8.3), one group was immersed in distilled water (DW) as a positive control, and one group had no immersion (negative control). All immersions were performed at 37°C for 90 days. Flexural strength, hardness, and surface roughness were measured before and after immersion. Data was analyzed with analysis of variance and post hoc Tukey's test (α = 0.05). RESULTS: After immersion, all specimens had lower flexural strength values when compared with those with no immersion. Comparing the immersion groups, the highest flexural strength value (93.96 ± 3.18 MPa) was recorded with IvoCad after immersion in DW while the lowest value (60.43 ± 2.66 MPa) was recorded with NextDent after being immersed in 7.0 pH saliva. All specimens had significant decrease in hardness except IvoCad and AvaDent specimens where both presented the highest surface hardness (53.76 ± 1.60 Vickers hardness number [VHN]) after immersion in DW while NextDent showed the lowest hardness value (24.91 ± 2.13 VHN) after being immersed in 8.3 pH saliva. There was statistically significant difference between the baseline and different artificial salivary pH solutions in terms of surfaces roughness, with the highest surface roughness were found in 3D-printed resin materials. CONCLUSION: After exposure to artificial saliva with different salivary pH, the milled CAD/CAM denture base resins showed higher flexural strength, hardness, and lesser surface roughness than conventional and 3D-printed denture base resins.

6.
J Prosthodont ; 32(4): 318-324, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35567362

RESUMO

PURPOSE: To compare flexural strength, elastic modulus, and surface hardness of computer aided design and computer aided manufacturing CAD-CAM milled, 3D-printed, and heat-polymerized denture base resins. MATERIALS AND METHODS: A total of 120 specimens were fabricated from heat-polymerized acrylic resin (HP), milled resin (Avadent and IvoCad), and 3D-printed resin (ASIGA, FormLabs, and NextDent). The specimens were divided into 6 groups according to the type of denture base material (n = 20/material) (10/flexural properties and 10/hardness). Flexural strength and elastic modulus of the specimens were evaluated by 3-point bending test and surface hardness by Vickers hardness test. To test flexural properties, the specimens were fabricated according to ISO 20795-1:2013 standards (64 × 10 × 3.3 ± 0.2 mm). The dimensions for hardness test were 15 × 10 × 2.5 ± 0.2 mm. Scanning electron microscope was used to evaluate the surface morphology of the fractured specimens. The means and standard deviations were calculated, followed by one-way ANOVA and Tukey post-hoc test (α = 0.05). RESULTS: Milled resins showed significantly higher values for flexural strength, elastic modulus, and surface hardness, followed by HP and then 3D-printed resins (p < 0.001). Within milled groups, flexural strength of AvaDent was significantly higher than IvoCad (p < 0.001), while elastic modulus and hardness didn't show significant difference. Within 3D-printed resins, ASIGA showed the highest flexural strength and elastic modulus, insignificantly with FormLabs (p = 0.595) and significantly with NextDent (p = 0.008). ASIGA also showed significantly the highest hardness among the 3D-printed groups. No significant difference was found between FormLabs and NextDent in flexural strength (p = 0.357), elastic modulus (p = 1.00), or surface hardness (p = 0.987). CONCLUSION: CAD-CAM milled resins had greater flexural properties and hardness compared to heat-polymerized acrylic resin and 3D-printed resins. Although 3D-printed samples showed the lowest values of tested properties, the flexural strength and modulus were above clinically acceptable values.


Assuntos
Bases de Dentadura , Resistência à Flexão , Teste de Materiais , Dureza , Desenho Assistido por Computador , Resinas Acrílicas , Propriedades de Superfície
7.
J Int Soc Prev Community Dent ; 12(5): 532-539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532322

RESUMO

Aims and Objective: The effect of occlusal splint therapy on the muscle activity has been addressed in the literature. However, its effect on condylar movements in subjects with normal and abnormal occlusions has not yet been investigated. This prospective clinical study addressed the effect of occlusal splint therapy on condylar movements in subjects with normal and abnormal occlusions using an electronic pantograph. Materials and Methods: Two groups of subjects were included in this study. The first group included subjects with normal occlusion, whereas the subjects in the other group were diagnosed with abnormal occlusion. The occlusal splint was fabricated, adjusted clinically, and delivered for each subject. Condylar movements were recorded using a Cadiax Compact II electronic pantograph at baseline, 2-, 4-, and 6-month follow-up periods to assess sagittal condylar inclination (SCI), immediate mandibular lateral translation (IMLT), and progressive mandibular lateral translation (PMLT). The t-test, one-way analysis of variance (ANOVA), and two-way ANOVA were used to compare the parameters between the groups and to assess the time effect on these parameters (α = 0.05). Results: Twenty subjects were recruited for this study (n = 10). Among them, 12 were women and eight were men, with a mean age of 34 years. In each group, insignificant differences were reported for each tested parameter at baseline and during the follow-up periods (P > 0.05). However, when comparing the two groups, the only significant difference was found in the SCI during the 6-month follow-up period (P = 0.014). Conclusions: Occlusal splints had an insignificant effect on the parameters SCI, IMLT, and PMLT up to 6 months of follow-up for subjects with normal or abnormal occlusion. SCI increased substantially in normal occlusion subjects compared with abnormal occlusion subjects during the 6-month follow-up period.

8.
Int J Biomater ; 2022: 6583084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855810

RESUMO

Purpose: Investigate the effect of low nanodiamond (ND) addition and autoclave polymerization on the flexural strength, impact strength, and hardness of polymethylmethacrylate (PMMA) denture base. Methods: A total of 240 heat polymerized PMMA were fabricated with low ND concentrations of 0.1%, 0.25%, and 0.5%, and unmodified as control. The specimens were divided equally into group I: conventionally polymerized PMMA by water bath and group II: polymerized by the autoclave. The impact strength, flexural strength, and elastic modulus were tested using the Charpy-type impact-testing machine and three-point bending test, respectively. A scanning electron microscope (SEM) was used to analyze the fractured surfaces. Surface hardness was measured by a hardness tester with a Vickers diamond. The bonding and interaction between the PMMA and ND particles were analyzed by the Fourier-transform infrared (FTIR) spectroscope. ANOVA and post hoc Tukey test were used for data analysis (α = 0.05). Results: ND addition significantly increased the flexural strength of groups I and II (p < 0.001, p=0.003); it was highest (128.8 MPa) at 0.25% ND concentration for group I and at 0.1% for group II. Elastic modulus increased at 0.1% ND for both groups (p=0.004, p=0.373), but the increase was statistically significant for group I only. Impact strength showed no significant change with the addition of ND in groups I and II (p=0.227, p=0.273), as well as surface hardness in group I (p=0.143). Hardness decreased significantly with 0.25%ND in group II. Conclusion: The addition of ND at low concentration increased the elastic modulus and flexural strength of conventionally and autoclave polymerized denture base resin. Autoclave polymerization significantly increased the flexural strength, impact strength, and hardness of unmodified PMMA and hardness of 0.5% ND group.

9.
J Prosthodont ; 31(9): 799-805, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35102627

RESUMO

PURPOSE: To investigate the influence of reducing material thickness on flexural properties of computer-aided design and computer-aided manufacturing (CAD-CAM) denture base resins. MATERIALS AND METHODS: Four CAD-CAM denture base acrylic resin materials were selected; two were made via the subtractive method (AvaDent and IvoCad) and two were made with the additive method (FormLabs and NextDent). One heat-polymerized denture base material was used as a control. Specimens were fabricated with varying thicknesses (n = 10/group): 3.3 mm, 2.5 mm, 2 mm, or 1.5 mm. Flexural strength was evaluated via a three-point bending test. One- and two-way ANOVA were used for data analysis along with Tukey's post hoc comparison (α = 0.05). RESULTS: Reducing the thickness of materials made via the subtractive method did not influence flexural strength up to 2 mm (p > 0.05). However, the difference was significant at a 1.5 mm thickness (p ˂ 0.001). For materials made via the additive method, NextDent specimens had no significant decrease in flexural strength when the thickness was reduced to 2 mm (p = 0.58). FormLabs specimens showed a significant decrease (p ˂ 0.001), although the values of flexural strength were clinically acceptable. During testing, specimens manufactured via the additive method at a 1.5 mm thickness bent without fracturing and were therefore excluded. All materials showed a reduction in elastic modulus as the thickness decreased (p ˂ 0.001). CONCLUSION: Heat-polymerized, AvaDent, and IvoCad materials may be used for denture base fabrication at a minimum thickness of 1.5 mm. FormLabs and NextDent may be fabricated at a 2 mm minimum thickness, with clinically acceptable flexural properties.


Assuntos
Materiais Dentários , Polimetil Metacrilato , Teste de Materiais , Bases de Dentadura , Desenho Assistido por Computador , Propriedades de Superfície
10.
J Prosthodont ; 31(9): 784-790, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35061921

RESUMO

PURPOSE: To evaluate the flexural strength (FS), impact strength (IS), surface roughness (Ra), and hardness of 3D-printed resin incorporating silicon dioxide nanoparticles (SNPs). MATERIALS AND METHODS: A total of 320 acrylic specimens were fabricated with different dimensions according to test specifications and divided into a control group of heat denture base resin, and 3 test groups (80/test (n = 10) of unmodified, 0.25 wt%, and 0.5 wt% SNPs modified 3D-printed resin. 10,000 thermal cycles were performed to half of the fabricated specimens. FS, IS (Charpy impact), Ra, and hardness were evaluated and the collected data was analyzed with ANOVA followed by Tukey's post hoc test (α = 0.05). RESULTS: Incorporating SNPs into 3D-printed resin significantly increased the FS, IS (at 0.5%) and hardness compared to unmodified 3D-printed resin (p < 0.001). However, the FS of pure 3D-printed and 3D/SNP-0.50% resin and IS of all 3D-printed resin groups were significantly lower than the control group (p < 0.0001). Hardness of 3D/SNP-0.25% and 3D/SNP-0.50% was significantly higher than control and unmodified 3D-printed resin (p < 0.0001), with insignificant differences between them. The Ra of all 3D-printed resin groups were significantly higher than control group (p < 0.001), while insignificant difference was found between 3D-printed groups. Thermal cycling significantly reduced FS and hardness for all tested groups, while for IS the reduction was significant only in the control and 3D/SNP-0.50% groups. Thermal cycling significantly increased Ra of the control group and unmodified 3D-printed resin (p < 0.001). CONCLUSION: The addition of SNPs to 3D-printed denture base resin improved its mechanical properties while Ra was not significantly altered. Thermal cycling adversely affected tested properties, except IS of unmodified 3D-printed resin and 3D/SNP-0.25%, and Ra of modified 3D-printed resin.


Assuntos
Nanopartículas , Dióxido de Silício , Bases de Dentadura , Teste de Materiais , Propriedades de Superfície
11.
J Prosthodont ; 31(3): 257-265, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34318547

RESUMO

PURPOSE: This study aimed to evaluate the repair strength of a newly introduced repair technique involving zero-gap repair width. MATERIALS AND METHODS: A total of 36 rectangular prism specimens with dimensions of 64 × 10 × 3.3 mm were prepared from heat-polymerized acrylic resin. Nine specimens were kept intact. The other specimens were sectioned into halves and modified to create repair gaps of 2.5-mm beveled (2.5B) as control, 0-mm beveled (ZB), and 0-mm inverse bi-beveled (ZIBB). The ZIBB group was prepared with a V-shaped internal groove on both halves (repair tunnel), while the intaglio and cameo surfaces were kept intact except for two small holes at the cameo surface for repair resin injection. The 2.5B and ZB groups were repaired conventionally while the ZIBB group was repaired by injecting repair resin into the tunnel through one of the holes until excess material oozed from the other hole. Repaired specimens were thermally cycled at 5 and 55°C for 10,000 cycles with 1 min dwell time. A 3-point bending test was conducted using a universal testing machine for flexural strength and elastic modulus measurement. Kruskal-Wallis/Mann-Whitney tests and ANOVA/post hoc Tukey tests were applied for data analysis (α = 0.05). RESULTS: The flexural strength of repaired specimens was substantially lower than that of intact specimens, and significant differences were present between repaired groups (p ˂ 0.05). ZB and ZIBB had higher flexural strength (p ˂ 0.001) and elastic modulus (p ˂ 0.05) than 2.5B. Among the ZB and ZIBB groups, ZB showed the highest flexural strength, and ZIBB had the highest elastic modulus. CONCLUSION: The closed repair technique improved the flexural strength and elastic modulus of repaired acrylic denture base.


Assuntos
Bases de Dentadura , Reparação em Dentadura , Reparação em Dentadura/métodos , Teste de Materiais , Maleabilidade , Polimetil Metacrilato , Propriedades de Superfície
12.
J Prosthodont ; 31(5): 412-418, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34347351

RESUMO

PURPOSE: This in vitro study evaluated the flexural strength, impact strength, hardness, and surface roughness of 3D-printed denture base resin subjected to thermal cycling treatment. MATERIALS AND METHODS: According to ISO 20795-1:2013 standards, 120 acrylic resin specimens (40/flexural strength test, 40/impact strength, and 40/surface roughness and hardness test, n = 10) were fabricated and distributed into two groups: heat-polymerized; (Major.Base.20) as control and 3D-printed (NextDent) as experimental group. Half of the specimens of each group were subjected to 10,000 thermal cycles of 5 to 55°C simulating 1 year of clinical use. Flexural strength (MPa), impact strength (KJ/m2 ), hardness (VHN), and surface roughness (µm) were measured using universal testing machine, Charpy's impact tester, Vickers hardness tester, and profilometer, respectively. Data were analyzed by ANOVA and Tukey honestly significant difference (HSD) test (α = 0.05). RESULTS: The values of flexural strength (MPa) were 86.63 ± 1.0 and 69.15 ± 0.88; impact strength (KJ/m2 )-6.32 ± 0.50 and 2.44 ± 0.31; hardness (VHN)-41.63 ± 2.03 and 34.62 ± 2.1; and surface roughness (µm)-0.18 ± 0.01 and 0.12 ± 0.02 for heat-polymerized and 3D-printed denture base materials, respectively. Significant differences in all tested properties were recorded between heat-polymerized and 3D-printed denture base materials (P < 0.001). Thermal cycling significantly lowered the flexural strength (63.93 ± 1.54 MPa), impact strength (2.40 ± 0.35 KJ/m2 ), and hardness (30.17 ± 1.38 VHN) of 3D-printed resin in comparison to thermal cycled heat-polymerized resin, but surface roughness showed non-significant difference (p = 0.262). CONCLUSION: 3D-printed resin had inferior flexural strength, impact strength, and hardness values than heat-polymerized resin, but showed superior surface roughness. Temperature changes (thermal cycling) significantly reduced the hardness and flexural strength and increased surface roughness, but did not affect the impact strength.


Assuntos
Bases de Dentadura , Polímeros , Teste de Materiais , Polimetil Metacrilato , Impressão Tridimensional , Propriedades de Superfície
13.
Eur J Dent ; 16(2): 286-295, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34823262

RESUMO

OBJECTIVE: This study aimed to evaluate the effect of nanodiamond (ND) addition to repair resin with repair gap modifications on the flexural and impact strength of repaired polymethylmethacrylate denture base. MATERIALS AND METHODS: Heat-polymerized acrylic resin specimens (N = 100/test) were prepared and sectioned to half creating two repair gaps: 2.5- and 0 mm with 45 degrees beveling. They were further divided into subgroups (n = 20) according to ND concentration (control, 0.25%ND, and 0.50%ND), thermocycling (500 cycles) was done to half the specimens in each subgroup. Flexural strength was tested using 3-point bending test and impact strength was tested by Charpy's impact test. Analysis of variance and post-hoc Tukey's tests were performed for data analysis (α = 0.05). Scanning electron microscope was employed for fracture surface analysis and ND distribution. RESULTS: Before and after thermocycling, the addition of ND significantly increased the flexural strength and elastic modulus in comparison to control group (p ˂ 0.001), while 0 mm repair gap showed insignificant difference between ND-reinforced groups (p ˃ 0.05). Regarding impact strength, ND addition increased the impact strength with 0 mm gap in comparison to control and 2.5 mm with ND (p˂0.001), while later groups showed no significant in between (p ˃ 0.05). Comparing thermocycling effect per respective concentration and repair gap, thermocycling adversely affected all tested properties except elastic modulus with 0 mm-0.25 and 0 mm-0.5% and impact strength with 2.5 mm, 2.5 mm-0.25%, 2.5 mm- 0.5% (p ˃ 0.05). CONCLUSION: ND addition combined with decreased repair gap improved the flexural strength, elastic modulus, and impact strength of repaired denture resin, while thermocycling has a negative effect on denture repair strength.

14.
Polymers (Basel) ; 13(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960883

RESUMO

BACKGROUND: Denture base resin has some drawbacks. This study investigated the impact of nanodiamonds (ND) and autoclave polymerization on the surface characteristics, translucency, and Candida albicans adherence in polymethyl methacrylate (PMMA) denture base resin after thermocycling. METHODS: Heat-polymerized PMMA discs (15 × 2 mm) with a total sample size n = 160 were studied. Specimens were categorized into two main groups (N = 80): conventional water-bath-polymerized PMMA (CP/PMMA) and autoclave-polymerized PMMA (AP/PMMA). Each group was subdivided according to the ND concentration into four groups (n = 20): unmodified PMMA as a control, and 0.1%, 0.25%, and 0.5% ND-PMMA. Scanning electron microscopy (SEM) was used to inspect the morphology of the ND and the ND-PMMA mixtures before heat polymerization. The specimens were exposed to thermal cycling (5000 cycles at 5 and 55 °C), then surface roughness was measured with a non-contact optical interferometric profilometer, contact angle with an automated goniometer, and translucency using a spectrophotometer. Colony-forming units (CFU) were used to determine the adherence of Candida albicans cells to the specimens. ANOVA and Tukey post hoc tests for pairwise comparison were utilized for the statistical analysis (α = 0.05). RESULTS: Surface roughness was significantly reduced with ND addition to CP/PMMA (p ˂ 0.001), while the reduction was not statistically significant in AP/PMMA (p = 0.831). The addition of ND significantly reduced the contact angle, translucency, and Candida albicans count of CP/PMMA and AP/PMMA (p ˂ 0.001). The incorporation of ND in conjunction with autoclave polymerization of PMMA showed significant reduction in all tested properties (surface roughness, contact angle and Candida albicans adherence) except translucency (p = 0.726). CONCLUSIONS: ND addition to PMMA and autoclave polymerization improved the surface properties with respect to antifungal activities, while the translucency was adversely affected.

15.
Saudi J Biol Sci ; 28(12): 7390-7395, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867042

RESUMO

This study aims to assess differences in biofilm bacterial composition between patients with low and high caries. Patients without a medical problem and with no history of antibiotic use, mouth wash or fluoride application in the previous 3 months were recruited. Caries was recorded at cavitation level; score was calculated by a national mean (dmft of 4.8 and DMFT of 2.7). Pooled biofilm samples were collected from mesial, distal, buccal, lingual, and occlusal surfaces. Based on caries experience, individuals were classified into low and high caries and both groups were compared regarding bacteria identified using 16S rRNA gene sequencing, and molecular phylogenetic analysis of the isolates was performed. A total of twenty seven randomly selected samples with low (n = 13) and high (n = 14) caries. Identification of oral bacteria was performed using 16S rRNA sequence, Rothia mucilaginosa and R. aeria were identified in low caries individuals, while R. dentocariosa was detected in high caries individuals. Two Streptococcus spp. were identified only in low caries S. salivarius and S. gordonii whereas S. sanguinis, S. mitis, S. sinensis, S. rubneri, S. vestibularis, S. cristatus and S. massiliensis were identified only in individuals with high caries. This study revealed the absence of R. mucilaginosa in the high caries subjects and its coexistence with the low caries subjects. Streptococcus mutans was insignificant contributor of caries among samples, while, Streptococcus sanguinis was the main constituent of high caries Saudi patients.

16.
Dent Mater J ; 40(4): 972-978, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33883327

RESUMO

The aim of this study was to assess the translucency of denture base acrylic resin reinforced with zirconium dioxide (ZrO2NPs), silicon dioxide (SiO2NPs), and diamond (DNPs) nanoparticles. A total of 130 heat-polymerized acrylic discs (15×2.5 mm) were fabricated conventionally and divided into control and experimental groups according to nanoparticle type and concentration (0.5, 1, 1.5, and 2.5 wt%). Unmodified acrylic resin specimens served as control. All specimens were thermocycled (5,000 cycles). Translucency was measured using a spectrophotometer. ANOVA and post-hoc Turkeys' test were used for data analysis at α=0.05. The translucency of modified PMMA was significantly lower than control (p<0.05) except 0.5% ZrO2NPs and SiO2NPs (p>0.05) which exhibited the highest translucency values among modified groups. As the NPs concentration increased, the translucency decreased and the lowest value was seen with 2.5% DNPs (1.18±0.10). The addition of ZrO2NPs, SiO2NPs, and DNPs into denture base resin decreased the translucency.


Assuntos
Bases de Dentadura , Nanopartículas , Resinas Acrílicas , Teste de Materiais , Polimetil Metacrilato , Propriedades de Superfície
17.
Int J Biomater ; 2021: 6668577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927766

RESUMO

OBJECTIVES: This study aimed to evaluate denture cleanser effects on color stability, surface roughness, and hardness of PMMA denture base resin reinforced with nano-ZrO2. MATERIALS AND METHODS: A total of 420 specimens were fabricated of unreinforced and nano-ZrO2 reinforced acrylic resin at 2.5% and 5%, resulting in 3 main groups. These groups were further subdivided (n = 10) according to immersion solution (distilled water, Corega, sodium hypochlorite, and Renew) and immersion duration. Surface roughness, hardness, and color were measured at baseline (2 days-T 0) in distilled water and then after 180 and 365 days of immersion (T 1 & T 2) in water or denture cleansing solutions. Data was collected and analyzed using two-way ANOVA followed by Bonferroni post hoc test (α = 0.05). RESULTS: Surface roughness increased significantly after denture cleanser immersion of unmodified and nano-ZrO2-modified PMMA materials while hardness decreased (P < 0.001). The denture cleansers significantly affected the color of both PMMA denture bases (P < 0.001). The immersion time in denture cleansers significantly affected all tested properties (P < 0.001). Within denture cleansers, NaOCl showed the highest adverse effects (P < 0.05) while Renew showed the least adverse effects. CONCLUSION: Denture cleansers can significantly result in color change and alter the surface roughness and hardness of denture base resin even with ZrO2 nanoparticles addition. Therefore, they should be carefully used.

18.
F1000Res ; 10: 1090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35136580

RESUMO

Background: This study aimed to determine whether people living in the Eastern Region of Saudi Arabia would prefer to continue the practice of physical distancing after the coronavirus disease 2019 (COVID-19) pandemic or to return to their previous way of life. Methods: This cross-sectional study was conducted from August 2020 to October 2020 in the Eastern Region of Saudi Arabia. A pre-tested questionnaire was sent electronically through social media. Data on participants' demographics and their perspectives regarding post-pandemic physical distancing were collected. The calculated sample size was 1,066; however, the total number of responses included in the analysis was 989. Results: The average age of the participants was 31.15±11.93 years. There were 435 men and 554 women in the study. Participants showed significantly high levels of disagreement with statements indicating that they were willing to use public transportation (61%), attend social gatherings (36%), and hug relatives or colleagues (40%) after the pandemic ( p<0.001); however, 43% agreed that they would spend time with family or friends ( p<0.001). The level of education was also found to be significantly related to the responses, and the level of disagreement increased as the level of education increased ( p<0.001). Conclusions: One-third of the study participants planned to continue engaging in physical distancing even after the current pandemic. This clearly indicates that our lives are not returning to how they were before the pandemic. However, it cannot be concluded whether or not this behavior will prevail in the long run. If so, it may greatly affect some businesses and perhaps some social norms and values as well.


Assuntos
COVID-19 , Pandemias , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Distanciamento Físico , SARS-CoV-2 , Adulto Jovem
19.
J Prosthodont ; 30(3): 235-244, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32783226

RESUMO

PURPOSE: The additions of zirconium oxide nanoparticles (nano-ZrO2 ) to denture base materials have produced nanocomposites with satisfactory properties, although there is a lack of research investigating the effects of denture cleansers on these materials. This study aimed to evaluate the effect of denture cleansers on the flexural strength of denture base materials modified with nano-ZrO2 . MATERIALS AND METHODS: A total of 270 specimens were fabricated from pure and nano-ZrO2 reinforced acrylic resins at 2.5% and 5%, resulting in 3 main groups. The groups were further divided into subgroups (n = 10) according to immersion solution (distilled water, Corega, sodium hypochlorite, and Renew) and immersion duration. Flexural strength was measured at baseline (T0 ) in distilled water and after 180 and 365 days of immersion (T1 and T2 ) in denture cleansers. Data were collected and analyzed using repeated measure ANOVA and Bonferroni post hoc tests (α = 0.05). RESULTS: The flexural strength of the nano-ZrO2 modified denture base material decreased significantly after immersion in different denture cleansers at different immersion durations in comparison to baseline (T0 ) (p < 0.001). Sodium hypochlorite showed the highest reduction in flexural strength followed by Corega, while Renew cleansing solution resulted in the least change. CONCLUSION: Denture cleansers can significantly affect the flexural strength of nano-ZrO2 modified denture base materials and thus should be used cautiously.


Assuntos
Bases de Dentadura , Nanopartículas , Higienizadores de Dentadura , Resistência à Flexão , Teste de Materiais , Polimetil Metacrilato , Propriedades de Superfície
20.
J Clin Exp Dent ; 12(4): e354-e362, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32382385

RESUMO

BACKGROUND: The purpose of this study was to evaluate the effect of aging process on the tensile strength (TS) of repaired acrylic denture base using ZrO2 nanoparticles (nano-ZrO2)-reinforced autopolymerized resin. MATERIAL AND METHODS: A total of 240 heat-polymerized acrylic resin specimens (n=10) were prepared and sectioned creating 2 mm-repair-gap. Autopolymerized acrylic resin, pure and modified with 2.5, 5, and 7.5wt% nano-ZrO2 were used for specimens repair. TS of repaired specimens were measured using the universal testing machine after water immersion at 37oC for 2, 7 and 30 days. At each time interval, half the immersed specimens underwent thermo-cycling aging process (5000 cycles at 5/55°C) before TS testing. One-way ANOVA and Tukey-Kramer multiple-comparison tests were used for data analysis at α=0.05. RESULTS: Aging process for all groups showed significant differences in TS between unreinforced and nano-ZrO2 reinforced groups (p<0.05). Within immersed nano-ZrO2-reinforced specimens, 5% group immersed for 30-days showed the highest significant TS value (p<0.05). With regards to thermocycling, 5% group showed the highest TS values after 2-days and 30-days groups while after 7-days, significant differences were found between 2.5% group and 5% and 7.5% groups (p<0.05). SEM images analysis displayed the ductile fracture type for nano-ZrO2 reinforced groups. CONCLUSIONS: In summary, 5.0%-nano-ZrO2 addition to repair resin showed an improvement in tensile strength of repaired acrylic resin with different aging processes. Key words:Acrylic resins, denture repair, tensile strength, thermocycling, water storage, zirconium oxide nanoparticle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA