Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 271: 129513, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33429262

RESUMO

Phytoremediation technology is an eco-friendly technology for the treatment of the polluted environment. Conversely, the natural and synthetic amendments have been revealed to improve the heavy metal phytoextraction from polluted soils with hyperaccumulation and/or non-hyper accumulating plants. This study evaluated the synergistic effect of biochar (BC) and EDTA to enhance phytoextraction of heavy metal lead (Pb) from artificially polluted soil by Brassica juncea. The BC and EDTA amendment enhanced the growth and survival of B. juncea under Pb stress environment. BC and EDTA significantly increased the biomass of B. juncea and significantly increased the total chlorophyll content in the combined amendment of BC and EDTA (22.2 mg/g) compared to the individual amendment of BC (12.8 mg/g) and EDTA (12.2 mg/g) respectively. The combined use of EDTA and biochar showed enhanced Pb uptake (60.2 mg/g) compared to control (10.0 mg/g). The order of Pb uptake was found to be BC + EDTA (60.2 mg/g) ˃ EDTA (23.5 mg/g) ˃ BC (22. 0 mg/g) ˃ control (10.0 mg/g). The maximum activity of SOD (35.2 ± 1.2 U/mg), POD (47.0 ± 1.8 U/mg) and CAT (28.0 ± 1.0 U/mg) was obtained in the mixed application of EDTA and BC. The obtained results revealed that the combined use of BC and EDTA was the most advantageous option for the treatment of Pb contaminated soil as compared to individual amendments.


Assuntos
Mostardeira , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Ácido Edético , Chumbo , Solo , Poluentes do Solo/análise
2.
Ecotoxicol Environ Saf ; 201: 110822, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534334

RESUMO

Boron (B) toxicity is an important abiotic constraint that limits crop productivity mainly in arid and semi-arid areas of the world. High levels of B in soil disturbs several physiological and biochemical processes in plant. The aim of this study was to investigate the function of melatonin (Mel) in the regulation of carbohydrate and proline (Pro) metabolism, photosynthesis process and antioxidant system of wheat seedlings under B toxicity conditions. High levels of B inhibited net photosynthetic rate (PN), stomatal conductance (gs), content of chlorophyll (Chl) a, b, δ-aminolevulinic acid (δ-ALA), nitrogen (N) and phosphorus (P), and increased accumulation of B, Chl degradation and activity of chlorophyllase (Chlase; a Chl degrading enzyme), and downregulated the activity of enzymes (δ-ALAD; δ-aminolevulinic acid dehydratase) involved in the biosynthesis of photosynthesis pigments, photosynthesis (carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase) and carbohydrate metabolism (cell wall invertase, CWI) in wheat seedlings. Also, high levels of B caused oxidative damage by increasing the content of malondialdehyde, superoxide anion and H2O2, and activity of glycolate oxidase (an H2O2-producing enzyme) in leaves of seedlings. However, foliar application of Mel significantly improved photosynthetic pigments concentration by increasing δ-ALA, δ-ALAD and decreasing Chl degradation and Chlase activity and led to an increase of plant growth attributes under both B toxicity and non-toxicity conditions. Under normal and B toxicity conditions, exogenous Mel also improved content of N, P, total soluble carbohydrates (TSCs) and Pro, and upregulated activity of CWI and Δ1-pyrroline-5-carboxylate synthetase. Mel significantly suppressed the adverse effects of excess B by alleviating cellular oxidative damage through enhanced reactive oxygen species scavenging by superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and lipoxygenase, and content of total phenolic compounds (TPC), ascorbate and reduced glutathione. These results postulate that Mel induced plant defense mechanisms by enhancing Pro, TSCs, TPC, nutrients (N and P) uptake and enzymatic and non-enzymatic antioxidants.


Assuntos
Antioxidantes/metabolismo , Boro/toxicidade , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
3.
Saudi J Biol Sci ; 26(6): 1129-1133, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31516340

RESUMO

This study aimed to determine the phytochemical components, microbial inhibitory effectiveness and antioxidant properties of Aerva lanata plant extracts. The whole plant showed various medicinal applications in folklore and traditional medicine in various parts of the world. The organic extracts such as ethanol, ethyl acetate, chloroform, acetone, water and methanol were subjected for various phytochemical analysis and confirmed for the existence of flavonoids, glycosides, terpenoids and alkaloid containing components. Alternatively, the extracts were performed for the antibacterial activities against the microbial pathogens and antioxidant properties. Results indicated that, the solvent extracts showed prominent activity against the tested strains. The MIC concentrations of plant were detected from 5 mg/ml to 40 mg/ml. The plant extract was highly effective against E. coli and E. aerogenes and the MIC was 5 mg/ml. In addition, the extracts noted promising antioxidant activities. The antioxidant activities were dose dependent manner. In conclusion, A. lanata extracts showed that significant major phytochemicals and effective antioxidant and anti-microbial properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA