Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Genet ; 15: 1314535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410152

RESUMO

Background: Hearing loss (HL) is an impairment of auditory function with identified genetic forms that can be syndromic (30%) or non-syndromic (70%). HL is genetically heterogeneous, with more than 1,000 variants across 150 causative genes identified to date. The genetic diagnostic rate varies significantly depending on the population being tested. Countries with a considerably high rate of consanguinity provide a unique resource for studying rare forms of recessive HL. In this study, we identified genetic variants associated with bilateral sensorineural HL (SNHL) using whole-exome sequencing (WES) in 11 families residing in the United Arab Emirates (UAE). Results: We established the molecular diagnosis in six probands, with six different pathogenic or likely pathogenic variants in the genes MYO15A, SLC26A4, and GJB2. One novel nonsense variant, MYO15A:p.Tyr1962Ter*, was identified in a homozygous state in one family, which has not been reported in any public database. SLC26A4 and GJB2 were found to be the most frequently associated genes in this study. In addition, six variants of uncertain significance (VUS) were detected in five probands in the genes CDH23, COL11A1, ADGRV1, NLRP3, and GDF6. In total, 12 variants were observed in eight genes. Among these variants, eight missense variants (66.7%), three nonsense variants (25.0%), and one frameshift (8.3%) were identified. The overall diagnostic rate of this study was 54.5%. Approximately 45.5% of the patients in this study came from consanguineous families. Conclusion: Understanding the genetic basis of HL provides insight for the clinical diagnosis of hearing impairment cases through the utilization of next-generation sequencing (NGS). Our findings contribute to the knowledge of the heterogeneous genetic profile of HL, especially in a population with a high rate of consanguineous marriage in the Arab population.

2.
Front Pharmacol ; 15: 1335058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414738

RESUMO

Gaucher disease (GD) is mainly caused by glucocerebrosidase (GCase) enzyme deficiency due to genetic variations in the GBA1 gene leading to the toxic accumulation of sphingolipids in various organs, which causes symptoms such as anemia, thrombocytopenia, hepatosplenomegaly, and neurological manifestations. GD is clinically classified into the non-neuronopathic type 1, and the acute and chronic neuronopathic forms, types 2 and 3, respectively. In addition to the current approved GD medications, the repurposing of Ambroxol (ABX) has emerged as a prospective enzyme enhancement therapy option showing its potential to enhance mutated GCase activity and reduce glucosylceramide accumulation in GD-affected tissues of different GBA1 genotypes. The variability in response to ABX varies across different variants, highlighting the diversity in patients' therapeutic outcomes. Its oral availability and safety profile make it an attractive option, particularly for patients with neurological manifestations. Clinical trials are essential to explore further ABX's potential as a therapeutic medication for GD to encourage pharmaceutical companies' investment in its development. This review highlights the potential of ABX as a pharmacological chaperone therapy for GD and stresses the importance of addressing response variability in clinical studies to improve the management of this rare and complex disorder.

3.
Biomedicines ; 11(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38137438

RESUMO

Methylmalonic aciduria and homocystinuria type C protein (MMACHC) is required by the body to metabolize cobalamin (Cbl). Due to its complex structure and cofactor forms, Cbl passes through an extensive series of absorptive and processing steps before being delivered to mitochondrial methyl malonyl-CoA mutase and cytosolic methionine synthase. Depending on the cofactor attached, MMACHC performs either flavin-dependent reductive decyanation or glutathione (GSH)-dependent dealkylation. The alkyl groups of Cbl have to be removed in the presence of GSH to produce intermediates that can later be converted into active cofactor forms. Pathogenic mutations in the GSH binding site, such as R161Q, R161G, R206P, R206W, and R206Q, have been reported to cause Cbl diseases. The impact of these variations on MMACHC's structure and how it affects GSH and Cbl binding at the molecular level is poorly understood. To better understand the molecular basis of this interaction, mutant structures involving the MMACHC-MeCbl-GSH complex were generated using in silico site-directed point mutations and explored using molecular dynamics (MD) simulations. The results revealed that mutations in the key arginine residues disrupt GSH binding by breaking the interactions and reducing the free energy of binding of GSH. Specifically, variations at position 206 appeared to produce weaker GSH binding. The lowered binding affinity for GSH in the variant structures could impact metabolic pathways involving Cbl and its trafficking.

4.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38149678

RESUMO

Studies continue to uncover contributing risk factors for breast cancer (BC) development including genetic variants. Advances in machine learning and big data generated from genetic sequencing can now be used for predicting BC pathogenicity. However, it is unclear which tool developed for pathogenicity prediction is most suited for predicting the impact and pathogenicity of variant effects. A significant challenge is to determine the most suitable data source for each tool since different tools can yield different prediction results with different data inputs. To this end, this work reviews genetic variant databases and tools used specifically for the prediction of BC pathogenicity. We provide a description of existing genetic variants databases and, where appropriate, the diseases for which they have been established. Through example, we illustrate how they can be used for prediction of BC pathogenicity and discuss their associated advantages and disadvantages. We conclude that the tools that are specialized by training on multiple diverse datasets from different databases for the same disease have enhanced accuracy and specificity and are thereby more helpful to the clinicians in predicting and diagnosing BC as early as possible.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Virulência , Bases de Dados Factuais , Fatores de Risco , Aprendizado de Máquina
6.
Orphanet J Rare Dis ; 18(1): 344, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924129

RESUMO

BACKGROUND: In metabolic stress, the cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) enzyme is involved in energy production through the gluconeogenesis pathway. PEPCK-C deficiency is a rare childhood-onset autosomal recessive metabolic disease caused by PCK1 genetic defects. Previous studies showed a broad clinical spectrum ranging from asymptomatic to recurrent hypoglycemia with/without lactic acidosis, encephalopathy, seizures, and liver failure. RESULTS: In this article, we discuss the occurrence of PEPCK-C deficiency in four families from the United Arab Emirates and Oman. All patients presented with unexplained hypoglycemia as a common feature. Two out of the seven patients presented with episodes of encephalopathy that resulted in seizures and neuroregression leading to global developmental delay and one patient had a neonatal presentation. Observed biochemical abnormalities include elevated lactate, transaminases, and tricarboxylic acid cycle metabolites in most patients. Elevated creatine kinase was documented in two patients. Whole exome sequencing revealed two novel (c.574T > C, and c.1268 C > T) and a previously reported splice site (c.961 + 1G > A) PCK1 variant in the affected families. CONCLUSION: Patients become vulnerable during intercurrent illness; thus, prevention and prompt reversal of a catabolic state are crucial to avoid irreversible brain damage. This report will help to expand the clinical understanding of this rare disease and recommends screening for PEPCK-C deficiency in unexplained hypoglycemia.


Assuntos
Encefalopatias , Hipoglicemia , Peptídeos e Proteínas de Sinalização Intracelular , Hepatopatias , Fosfoenolpiruvato Carboxiquinase (GTP) , Humanos , Recém-Nascido , Hipoglicemia/etiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Hepatopatias/complicações , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Convulsões/genética
7.
Front Pharmacol ; 14: 1182465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601065

RESUMO

The emergence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) posed a serious worldwide threat and emphasized the urgency to find efficient solutions to combat the spread of the virus. Drug repurposing has attracted more attention than traditional approaches due to its potential for a time- and cost-effective discovery of new applications for the existing FDA-approved drugs. Given the reported success of machine learning (ML) in virtual drug screening, it is warranted as a promising approach to identify potential SARS-CoV-2 inhibitors. The implementation of ML in drug repurposing requires the presence of reliable digital databases for the extraction of the data of interest. Numerous databases archive research data from studies so that it can be used for different purposes. This article reviews two aspects: the frequently used databases in ML-based drug repurposing studies for SARS-CoV-2, and the recent ML models that have been developed for the prospective prediction of potential inhibitors against the new virus. Both types of ML models, Deep Learning models and conventional ML models, are reviewed in terms of introduction, methodology, and its recent applications in the prospective predictions of SARS-CoV-2 inhibitors. Furthermore, the features and limitations of the databases are provided to guide researchers in choosing suitable databases according to their research interests.

8.
Front Genet ; 14: 1219514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576556

RESUMO

Birk-Landau-Perez syndrome (BILAPES) is an autosomal recessive cerebro-renal syndrome associated with genetic defects in the SLC30A9 gene, initially reported in 2017 in six individuals belonging to a large Bedouin kindred. The SLC30A9 gene encodes a putative mitochondrial zinc transporter with ubiquitous expression, the highest found in the brain, kidney, and skeletal muscle. Since the first report, only one additional affected patient has been described, but there were some inconsistencies, such as hearing loss, failure to thrive, and neuroimaging findings between the clinical presentation of the disease in the Bedouin family and the second patient. Here, we present two more patients from a consanguineous Middle Eastern family with features of chronic kidney disease, neurodevelopmental regression, ataxia, hearing loss, and eye abnormalities, which were largely consistent with BILAPES. Whole-exome sequencing detected a homozygous in-frame deletion c.1049_1051delCAG (p.Ala350del) in the SLC30A9 gene, which was the same variant detected in the patients from the primary literature report and the variant segregated with disease in the family. However, in the patients described here, brain MRI showed cerebellar atrophy, which was not a cardinal feature of the syndrome from the primary report. Our findings provide further evidence for SLC30A9-associated BILAPES and contribute to defining the clinical spectrum.

9.
Front Pediatr ; 11: 1183574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502193

RESUMO

Spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM) are linked to SLC1A4 genetic variants since the first reported case in 2015. SLC1A4 encodes for the neutral amino acid transporter ASCT1 which is involved in the transportation of serine between astrocytes and neurons. Although most of the reported cases are of Ashkenazi Jewish ancestry, SPATCCM has also been reported in Irish, Italian, Czech, Palestinian, and Pakistani ethnicities. Herein, we report two Pakistani male siblings from a non-consanguineous marriage presented with global developmental delay associated with spastic quadriplegia, microcephaly, and infantile spasm. Since infancy, both siblings suffered from microcephaly with brain MRI demonstrating generalized atrophy of the frontal, temporal, and parietal lobes with a prominence of the subarachnoid spaces, widening of the Sylvian fissures, and enlargement of the ventricular system not compatible with the chronological age of both patients associated with thinning of the corpus callosum. Whole-exome sequencing of both affected brothers revealed novel compound heterozygous variants in the SLC1A4 gene (NM_003038) segregating from their parents. The maternal c.971delA (p.N324Tfs*29) deletion variant disturbs the transcript reading frame leading to the generation of a premature stop codon and its subsequent degradation by nonsense-mediated mRNA decay as detected through expression analysis. The paternal c.542C > T (p.S181F) missense variant was predicted deleterious via multiple in silico prediction tools as the amino acid substitution is speculated to affect the overall ASCT1 structural confirmation due to the loss of an H-bond at the core of the protein at this position which might affect its function as concluded from the simulation analysis. The presented cases expand the genetic and clinical spectrum of ASCT1 deficiency and support the importance of including SLC1A4 gene screening in infants with unexplained global neurodevelopmental delay regardless of ethnicity.

10.
Front Genet ; 14: 1258083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38371307

RESUMO

Rare diseases (RDs) are rare complex genetic diseases affecting a conservative estimate of 300 million people worldwide. Recent Next-Generation Sequencing (NGS) studies are unraveling the underlying genetic heterogeneity of this group of diseases. NGS-based methods used in RDs studies have improved the diagnosis and management of RDs. Concomitantly, a suite of bioinformatics tools has been developed to sort through big data generated by NGS to understand RDs better. However, there are concerns regarding the lack of consistency among different methods, primarily linked to factors such as the lack of uniformity in input and output formats, the absence of a standardized measure for predictive accuracy, and the regularity of updates to the annotation database. Today, artificial intelligence (AI), particularly deep learning, is widely used in a variety of biological contexts, changing the healthcare system. AI has demonstrated promising capabilities in boosting variant calling precision, refining variant prediction, and enhancing the user-friendliness of electronic health record (EHR) systems in NGS-based diagnostics. This paper reviews the state of the art of AI in NGS-based genetics, and its future directions and challenges. It also compare several rare disease databases.

11.
Front Genet ; 13: 1053999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583020

RESUMO

We reported a 22-year-old Emirati male with autosomal recessive primary hypertrophic osteoarthropathy caused by a possibly pathogenic homozygous non-synonymous variant in the SLCO2A1 gene (NM_005630.3: c.289C>T, p. Arg97Cys) presenting with joint swelling, forehead furrowing, and significant clubbing in all fingers and toes. Currently, no standard treatments are approved for this disease; medical care is palliative and includes non-steroidal anti-inflammatory drugs, corticosteroids, tamoxifen, retinoids, and risedronate. Colchicine may be helpful for the pain due to subperiosteal new bone formation. Our patient was treated with etoricoxib 60 mg once daily and showed a significant clinical improvement at the 6-month mark that was reversed upon the withdrawal of this medication. This case report highlights the importance of placing etoricoxib among first-line therapy recommendations for cases with confirmed primary hypertrophic osteoarthropathy diagnosis. To the best of our knowledge, this is the only case of primary hypertrophic osteoarthropathy from the Middle Eastern population of Arab ethnicity that has responded to non-steroidal anti-inflammatory drug therapy.

12.
Orphanet J Rare Dis ; 17(1): 388, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303251

RESUMO

BACKGROUND: Infantile-onset Pompe disease (IOPD) is a rare and devastating, autosomal recessive lysosomal storage disorder that manifests immediately after birth. In severe IOPD cases, complete/almost-complete acid alpha-glucosidase enzyme deficiency is observed. Considering the rapid progression of the disease, timely diagnosis and treatment are important; even slight delays can remarkably alter the course of the disease. Enzyme replacement therapy (ERT) with recombinant human acid alpha-glucosidase is safe and beneficial for IOPD patients. However, there is heterogeneity in the patient response to ERT. The factors influencing treatment effectiveness include the patient's age at the time of treatment initiation, pre-existing muscle damage, and cross-reactive immunologic material (CRIM) status at baseline. Immunomodulation along with ERT is the recently developed therapeutic approach that has been included in the therapeutic armamentarium of IOPD for optimizing clinical benefits, particularly in CRIM-negative IOPD patients. However, there is a dearth of published data on the early diagnosis and clinical position of the immunomodulation protocol along with ERT in the treatment of IOPD in the Gulf region. METHODS AND RESULTS: Expert panel meetings, involving six experts from the Kingdom of Saudi Arabia, Kuwait, Oman, Qatar, and the United Arab Emirates, were convened to develop consensus-based recommendations addressing current diagnostic and management challenges for patients with IOPD in the Gulf region. Furthermore, this consensus guideline may be implemented in clinical practice for the timely diagnosis and management of patients with IOPD. CONCLUSION: The expert consensus will help clinicians to make appropriate and timely decisions regarding immunomodulation initiation and ERT treatment in IOPD patients in the Gulf region.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Humanos , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , alfa-Glucosidases/uso terapêutico , Terapia de Reposição de Enzimas , Diagnóstico Precoce , Resultado do Tratamento , Arábia Saudita
13.
J Mol Neurosci ; 72(6): 1322-1333, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35316504

RESUMO

Gaucher disease is caused by glucocerebroside accumulation in different tissues due to beta-glucocerebrosidase enzyme deficiency. Genetic defects in proteins involved in beta-glucocerebrosidase processing and activation may indirectly lead to Gaucher-like phenotypes in affected individuals. Saposin C, derived from the prosaposin precursor, is a crucial activator for beta-glucocerebrosidase, and its deficiency has been linked to Gaucher-like phenotypes in several clinical reports. Here, we report two Emirati families with Gaucher-like disorder due to Saposin C deficiency. Affected patients from both families carry the homozygous state of the novel c.1005 + 1G > A splice site (first to be reported) variant in the PSAP gene. Molecular analysis showed that the underlying variant is predicted to result in the retention of intron 9-10 and the formation of a premature stop codon leading to the complete loss of Saposin C. Clinical examination of the affected patients showed a wide heterogeneity in the patients' age of onset and symptoms ranging from Gaucher-like type 3 phenotype with severe refractory myoclonic epilepsy to Gaucher-like type 1 phenotype with growth retardation and hepatosplenomegaly. Collectively, the available clinical and molecular data confirms the pathogenicity of the reported PSAP splice site variant. The reported clinical cases expand the genetic and clinical spectrum of Saposin C deficiency.


Assuntos
Doença de Gaucher , Sítios de Splice de RNA , Saposinas , Doença de Gaucher/genética , Humanos , Linhagem , Sítios de Splice de RNA/genética , Saposinas/genética , Emirados Árabes Unidos
14.
Clin Genet ; 101(4): 403-410, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34988996

RESUMO

Here, we delineate the phenotype of two siblings with a bi-allelic frameshift variant in MMP15 gene with congenital cardiac defects, cholestasis, and dysmorphism. Genome sequencing analysis revealed a recently reported homozygous frameshift variant (c.1058delC, p.Pro353Glnfs*102) in MMP15 gene that co-segregates with the phenotype in the family in a recessive mode of inheritance. Relative quantification of MMP15 mRNA showed evidence of degradation of the mutated transcript, presumably by nonsense mediated decay. Likewise, MMP15: p.Gly231Arg, a concurrently reported homozygous missense variant in another patient exhibiting a similar phenotype, was predicted to disrupt zinc ion binding to the MMP-15 enzyme catalytic domain, which is essential for substrate proteolysis, by structural modeling. Previous animal models and cellular findings suggested that MMP15 plays a crucial role in the formation of endocardial cushions. These findings confirm that MMP15 is an important gene in human development, particularly cardiac, and that its loss of function is likely to cause a severe disorder phenotype.


Assuntos
Colestase , Cardiopatias Congênitas , Icterícia , Metaloproteinase 15 da Matriz/genética , Animais , Insuficiência de Crescimento/genética , Cardiopatias Congênitas/genética , Homozigoto , Humanos , Fenótipo
15.
Hepatol Commun ; 6(3): 473-479, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677006

RESUMO

Mutations in the transaldolase 1 (TALDO1) gene have been described in a limited number of cases. Several organs can be affected and clinical manifestations are variable, but often include liver dysfunction and/or hepatosplenomegaly. We report 4 patients presenting with liver disease: 2 with early-onset hepatocellular carcinoma (HCC). Patients with cholestasis and mutations in TALDO1 were identified by next-generation sequencing. Clinical, laboratory, and histological data were collected. Four (1 male) patients were identified with variants predicted to be damaging in TALDO1. Three patients were homozygous (two protein truncating/one missense mutations), 1 one was compound heterozygous (two missense mutations). Median age at presentation was 4 months (range, 2-210 days) with jaundice (3), hepatosplenomegaly (3), and pancytopaenia (1). The diagnosis was corroborated by detection of minimal transaldolase enzyme activity in skin fibroblasts in two cases and raised urine polyols in the third. Three patients underwent liver transplantation (LT), 2 of whom had confirmed HCC on explanted liver. One patient suddenly died shortly after LT. The nontransplanted case has a chronic liver disease with multiple dysplastic liver nodules, but normal liver biochemistry and alpha-fetoprotein. Median follow-up was 4 years (range, 1-21). Conclusion: Transaldolase deficiency can include early-onset normal gamma-glutamyltransferase liver disease with multisystem involvement and variable progression. Patients with this disease are at risk of early-onset HCC and may require early LT.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Transaldolase , Carcinoma Hepatocelular/genética , Feminino , Humanos , Lactente , Recém-Nascido , Neoplasias Hepáticas/genética , Masculino , Mutação , Transaldolase/genética
16.
Genes (Basel) ; 12(9)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34573316

RESUMO

The variants of electron transfer flavoprotein (ETFA, ETFB) and ETF dehydrogenase (ETFDH) are the leading cause of glutaric aciduria type II (GA-II). In this study, we identified 13 patients harboring six variants of two genes associated with GA-II. Out of the six variants, four were missense, and two were frameshift mutations. A missense variant (ETFDH:p.Gln269His) was observed in a homozygous state in nine patients. Among nine patients, three had experienced metabolic crises with recurrent vomiting, abdominal pain, and nausea. In one patient with persistent metabolic acidosis, hypoglycemia, and a high anion gap, the ETFDH:p.Gly472Arg, and ETFB:p.Pro94Thrfs*8 variants were identified in a homozygous, and heterozygous state, respectively. A missense variant ETFDH:p.Ser442Leu was detected in a homozygous state in one patient with metabolic acidosis, hypoglycemia, hyperammonemia and liver dysfunction. The ETFDH:p.Arg41Leu, and ETFB:p.Ile346Phefs*19 variants were observed in a homozygous state in one patient each. Both these variants have not been reported so far. In silico approaches were used to evaluate the pathogenicity and structural changes linked with these six variants. Overall, the results indicate the importance of a newborn screening program and genetic investigations for patients with GA-II. Moreover, careful interpretation and correlation of variants of uncertain significance with clinical and biochemical findings are needed to confirm the pathogenicity of such variants.


Assuntos
Deficiência Múltipla de Acil Coenzima A Desidrogenase
17.
Front Pediatr ; 9: 803732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35186827

RESUMO

Arylsulfatase B is an enzyme present in the lysosomes that involves in the breakdown of large sugar molecules known as glycosaminoglycans (GAGs). Arylsulfatase B chemically modifies two GAGs, namely, dermatan sulfate and chondroitin sulfate, by removing the sulfate group. Mutations in the gene encoding the arylsulfataseB enzyme causes lysosomal storage disorder, mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome. In this study, we report a case of congenital hearing loss with mild pigmentary changes in the retina, indicative of Usher syndrome, and a missense variant reported as likely pathogenic for MPS VI. Sequencing results identified a pathogenic missense variant p.Arg1746Gln in the CDH23 gene. However, another missense variant ARSB:p.Arg159Cys was reported as likely pathogenic to the treating physician. Mutations in ARSB gene have been associated with MPS VI. Subsequently, ARSB enzyme activity was found low twice in dried blood spot (DBS), suggestive of MPS VI. The patient did not have the clinical features of MPS VI, but considering the wide clinical spectrum, progressive nature of MPS VI, and the fact that a treatment for MPS VI is available to prevent disease progression, further biochemical, enzymatic, and in silico studies were performed to confirm the pathogenicity of this variant. In silico tools predicted this variant to be pathogenic. However, the results of urine and serum GAGs and ARSB enzyme levels measured from patient's fibroblast were found normal. Based on clinical and biochemical findings, ARSB:p.Arg159Cys is likely benign and did not support the diagnosis of MPS VI. However, CDH23:p.Arg1746Gln, a pathogenic variant, supports the underlying cause of hearing loss. This study highlights the importance of a robust correlation between genetic results and clinical presentation, and biochemical and enzymatic studies, to achieve a differential diagnosis.

18.
Hum Genet ; 139(5): 657-673, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32219518

RESUMO

GM1-gangliosidosis, a lysosomal storage disorder, is associated with ~ 161 missense variants in the GLB1 gene. Affected patients present with ß-galactosidase (ß-Gal) deficiency in lysosomes. Loss of function in ER-retained misfolded enzymes with missense variants is often due to subcellular mislocalization. Deoxygalactonojirimycin (DGJ) and its derivatives are pharmaceutical chaperones that directly bind to mutated ß-Gal in the ER promoting its folding and trafficking to lysosomes and thus enhancing its activity. An Emirati child has been diagnosed with infantile GM1-gangliosidosis carrying the reported p.D151Y variant. We show that p.D151Y ß-Gal in patient's fibroblasts retained < 1% residual activity due to impaired processing and trafficking. The amino acid substitution significantly affected the enzyme conformation; however, p.D151Y ß-Gal was amenable for partial rescue in the presence of glycerol or at reduced temperature where activity was enhanced with ~ 2.3 and 7 folds, respectively. The butyl (NB-DGJ) and nonyl (NN-DGJ) derivatives of DGJ chaperoning function were evaluated by measuring their IC50s and ability to stabilize the wild-type ß-Gal against thermal degradation. Although NN-DGJ showed higher affinity to ß-Gal, it did not show a significant enhancement in p.D151Y ß-Gal activity. However, NB-DGJ promoted p.D151Y ß-Gal maturation and enhanced its activity up to ~ 4.5% of control activity within 24 h which was significantly increased to ~ 10% within 6 days. NB-DGJ enhancement effect was sustained over 3 days after washing it out from culture media. We therefore conclude that NB-DGJ might be a promising therapeutic chemical chaperone in infantile GM1 amenable variants and therefore warrants further analysis for its clinical applications.


Assuntos
1-Desoxinojirimicina/farmacologia , Fibroblastos/metabolismo , Gangliosidose GM1/metabolismo , Proteínas Mutantes/metabolismo , Mutação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , beta-Galactosidase/metabolismo , 1-Desoxinojirimicina/química , Pré-Escolar , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/patologia , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Chaperonas Moleculares/farmacologia , Proteínas Mutantes/química , Proteínas Mutantes/genética , Conformação Proteica , Transporte Proteico , beta-Galactosidase/química , beta-Galactosidase/genética
19.
J Cent Nerv Syst Dis ; 12: 1179573520909377, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32165851

RESUMO

BACKGROUND: In addition to the reduced energy production, characteristic of mitochondrial disorders, nitric oxide (NO) deficiency can occur as well. The NO produced by vascular endothelial cells relaxes vascular smooth muscles, resulting in vasodilation that maintains the patency of small blood vessels and promotes blood flow through microvasculature. Endothelial dysfunction due to inability of vascular endothelium to generate enough NO to maintain adequate vasodilation can result in decreased perfusion in the microvasculature of various tissues, contributing to many complications seen in individuals with mitochondrial diseases. The amino acids arginine and citrulline are NO precursors: increasing their concentrations could potentially restore NO production. METHODS: In this study, we assessed endothelial dysfunction in children and adolescents with mitochondrial diseases. We also investigated the effect of arginine and citrulline supplementation on endothelial dysfunction in these individuals. We used peripheral arterial tonometry to measure the reactive hyperemic index (RHI), which is low when there is endothelial dysfunction. RESULTS: The results demonstrated low RHI in individuals with mitochondrial diseases, indicating endothelial dysfunction. RHI increased with arginine or citrulline supplementation suggesting that supplementation with NO precursors can improve endothelial dysfunction by enhancing NO production. CONCLUSIONS: This study is the first one to use peripheral arterial tonometry methodology in mitochondrial diseases. The results of this study provide evidence for endothelial dysfunction in mitochondrial diseases and demonstrate that arginine or citrulline supplementation can alleviate the endothelial dysfunction, providing more evidence for the potential therapeutic utility of these amino acids in mitochondrial diseases.

20.
J Mol Neurosci ; 70(1): 45-55, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31468281

RESUMO

Schindler disease is a rare autosomal recessive lysosomal storage disorder caused by a deficiency in alpha-N-acetylgalactosaminidase (α-NAGA) activity due to defects in the NAGA gene. Accumulation of the enzyme's substrates results in clinically heterogeneous symptoms ranging from asymptomatic individuals to individuals with severe neurological manifestations. Here, a 5-year-old Emirati male born to consanguineous parents presented with congenital microcephaly and severe neurological manifestations. Whole genome sequencing revealed a homozygous missense variant (c.838C>A; p.L280I) in the NAGA gene. The allele is a reported SNP in the ExAC database with a 0.0007497 allele frequency. The proband's asymptomatic sister and cousin carry the same genotype in a homozygous state as revealed from the family screening. Due to the extreme intrafamilial heterogeneity of the disease as seen in previously reported cases, we performed further analyses to establish the pathogenicity of this variant. Both the proband and his sister showed abnormal urine oligosaccharide patterns, which is consistent with the diagnosis of Schindler disease. The α-NAGA activity was significantly reduced in the proband and his sister with 5.9% and 12.1% of the mean normal activity, respectively. Despite the activity loss, p.L280I α-NAGA processing and trafficking were not affected. However, protein molecular dynamic simulation analysis revealed that this amino acid substitution is likely to affect the enzyme's natural dynamics and hinders its ability to bind to the active site. Functional analysis confirmed the pathogenicity of the identified missense variant and the diagnosis of Schindler disease. Extreme intrafamilial clinical heterogeneity of the disease necessitates further studies for proper genetic counseling and management.


Assuntos
Doenças por Armazenamento dos Lisossomos/genética , Mutação de Sentido Incorreto , Distrofias Neuroaxonais/genética , Fenótipo , alfa-N-Acetilgalactosaminidase/deficiência , Adulto , Domínio Catalítico , Células Cultivadas , Criança , Feminino , Humanos , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Distrofias Neuroaxonais/patologia , Linhagem , Ligação Proteica , alfa-N-Acetilgalactosaminidase/química , alfa-N-Acetilgalactosaminidase/genética , alfa-N-Acetilgalactosaminidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA