Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Asian Pac J Cancer Prev ; 25(6): 2051-2058, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38918667

RESUMO

OBJECTIVE: Breast cancer is one of the most widespread tumors among women worldwide, which is difficult to treat due to the presence of chemoresistance and the risk of tumor recurrence and metastasis. There is a pressing necessity to develop efficient treatments to improve response for treatment and increase prolong survival of breast cancer patients. Photodynamic therapy (PDT) has attracted interest for its features as a noninvasive and relatively selective cancer treatment. This method relies on light-activated photosensitizers that, upon absorbing light, generate reactive oxygen species (ROS) with powerful cell-killing outcomes. Nuclear factor kappa B (NF-κB), a transcription factor, plays a key role in cancer development by regulating cell proliferation, differentiation, and survival. Inhibiting NF-κB can sensitize tumor cells to chemotherapeutic agents. Dimethyl fumarate (DMF), an NF-κB inhibitor approved by the FDA for multiple sclerosis treatment, has further shown promise in suppressing breast cancer cell growth in vitro. We hypothesized that combining PDT with Dimethyl fumarate (DMF) could further enhance therapeutic efficacy for both treatment modalities. METHODS: In the current study, we explored the PDT effect of 1 and 2 mM aminolaevulinic acid (ALA) and low-power He-Ne laser irradiation combined with different concentrations of DMF (2.5, 1.25, or 0.652 µg/ml) against hormone nonresponsive AMJ13 breast cancer cell line that is derived from Iraqi patient. RESULTS: Our results demonstrated that co-administration with all tested DMF concentrations significantly enhanced the cytotoxicity of PDT antitumor effect. The combination index analysis showed presence of synergism in combining PDT with DMF. CONCLUSION: This finding suggests that the combination of PDT with DMF could be a promising novel strategy against triple negative breast cancer that could be applied clinically due to the fact that both of these treatments are already clinically approved therapies.


Assuntos
Ácido Aminolevulínico , Neoplasias da Mama , Proliferação de Células , Fumarato de Dimetilo , NF-kappa B , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fotoquimioterapia/métodos , NF-kappa B/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Ácido Aminolevulínico/farmacologia , Feminino , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Fumarato de Dimetilo/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Linhagem Celular Tumoral
2.
Oncol Lett ; 27(5): 197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516679

RESUMO

Oral squamous cell carcinoma (OSCC) is a frequent human malignancy that demonstrates a range of genetic and epigenetic alterations. Histone deacetylases (HDACs) are key epigenetic regulators of cell-cycle progression, differentiation and apoptosis and their dysregulation is implicated in cancer development. HDACs are promising targets for anticancer therapy through the utilisation of HDAC inhibitors (HDACis). OSCC cells have been shown to have low levels of histone acetylation, suggesting that HDACis may produce beneficial effects in patients with OSCC. Valproic acid (VPA) is a class I and IIa HDACi and, therefore, may be useful in anticancer therapy. VPA has been reported as a chemo-preventive epigenetic agent in individuals with high-risk oral dysplasia (OD) and thus associated with a reduced risk of HNSCC. It is hypothesised that HDAC inhibition by VPA triggers a change in the expression levels of different HDAC family gene-members. The present review summarises the current literature on HDAC expression changes in response to VPA in oral cancer patients and in vitro studies in an effort to better understand the potential epigenetic impact of VPA treatment. The present review outlined the need for exploring supportive evidence of the chemo-preventive role played by VPA-based epigenetic modification in treating oral pre-cancerous lesions and, thus, providing a novel tolerable chemotherapeutic strategy for patients with oral cancer.

3.
Oncol Lett ; 19(3): 2502-2507, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32194751

RESUMO

HURP gene encodes the hepatoma upregulated protein (HURP), a microtubule associated protein regulating mitotic spindle dynamics, which promotes chromosomal congression and alignment during mitosis, with a potential role in tumorigenesis. In the present study, HURP mRNA expression was investigated by reverse transcription-quantitative PCR in oropharyngeal squamous cell carcinoma (OPSCC). Primary OPSCC tumors from 107 patients and 48 adjacent normal tissues, as well as 12 respiratory tract cancer cell lines (9 head and neck squamous cell carcinoma, 2 lung cancer and 1 normal bronchial) were utilised in the present study. mRNA expression levels of HURP were higher in malignant OPSCC tissues compared with in normal mucosa (P<1×10-5) and significantly associated with sex and smoking status (P<0.0001). Vinorelbine in vitro toxicity at half-maximal inhibitory concentration (IC50) was measured in the 11 cancer cell lines using an MTT assay. Sensitivity to vinorelbine was significantly correlated with HURP expression (r=0.636; P=0.035). The data indicated that HURP overexpression is frequent in OPSCC tissues and associated with smoking. The correlation between HURP mRNA expression and vinorelbine in vitro response suggests that HURP is a potential modulator of vinorelbine response; therefore, it should be explored for its possible predictive value for the efficiency of vinorelbine treatment in this type of cancer.

4.
Oncol Lett ; 13(6): 4463-4468, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28588715

RESUMO

Deregulation of mitotic spindle genes has been reported to contribute to the development and progression of malignant tumours. The aim of the present study was to explore the association between the expression profiles of Aurora kinases (AURKA, AURKB and AURKC), cytoskeleton-associated protein 5 (CKAP5), discs large-associated protein 5 (DLGAP5), kinesin-like protein 11 (KIF11), microtubule nucleation factor (TPX2), monopolar spindle 1 kinase (TTK), and ß-tubulins (TUBB) and (TUBB3) genes and clinicopathological characteristics in human non-small cell lung carcinoma (NSCLC). Reverse transcription-quantitative polymerase chain reaction-based RNA gene expression profiles of 132 NSCLC and 44 adjacent wild-type tissues were generated, and Cox's proportional hazard regression was used to examine associations. With the exception of AURKC, all genes exhibited increased expression in NSCLC tissues. Of the 10 genes examined, only AURKA was significantly associated with prognosis in NSCLC. Multivariate Cox's regression analysis demonstrated that AURKA mRNA expression [hazard ratio (HR), 1.81; 95% confidence interval (CI), 1.16-2.84; P=0.009], age (HR, 1.03; 95% CI, 1.00-1.06; P=0.020), pathological tumour stage 2 (HR, 2.43; 95% CI, 1.16-5.10; P=0.019) and involvement of distal nodes (pathological node stage 2) (HR, 3.14; 95% CI, 1.24-7.99; P=0.016) were independent predictors of poor prognosis in patients with NSCLC. Poor prognosis of patients with increased AURKA expression suggests that those patients may benefit from surrogate therapy with AURKA inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA