Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tissue Cell ; 84: 102192, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579617

RESUMO

Aging is a highly complicated natural process. Brain aging is associated with remarkable neurodegenerative changes and oxidative damage. Whey protein (WP) has been mentioned to have an antioxidant property. Nuclear factor erythrogen-2 associated factor 2 (Nrf2) signaling pathway is an antioxidant defense system. Nrf2 activity declines with age so, its activation could be a promising therapeutic strategy for aging. This study aimed to explore the anti-aging role of WP against D-galactose (D-gal) induced age-related degenerative changes and oxidative damage in the prefrontal cortex (PFC) and investigate its underlying mechanisms. Forty adult male rats were divided into 4 groups; control, WP group received WP (28.77 mg/kg/day) by gastric tube on the 4th experimental week; D-gal (model group) received D-gal (300 mg/kg/day) intraperitoneally for 8 weeks and D-gal +WP group received WP on the 4th week of D-gal treatment. Specimens from PFC were obtained for biochemical, histological, immunohistochemical and western blot analysis. WP treatment in D-gal +WP group reduced lipid peroxidation, enhanced antioxidant enzyme activities, decreased advanced glycation end products level and improved the histological and ultrastructural alterations. Moreover, the number of neurons expressed the senescence marker; p21 and percentage area of the astrocytic marker; glial fibrillary acidic protein were significantly reduced. WP also enhanced Nrf2 pathway and its downstream targets; heme oxygenase-1 and NADPH quinone oxidoreductase 1. In conclusion WP alleviates the D-gal-induced PFC aging through activating Nrf2 pathway, reducing cell senescence and gliosis. So, it may be a potential therapeutic target to retard the aging process.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/metabolismo , Envelhecimento/metabolismo , Estresse Oxidativo , Transdução de Sinais , Córtex Pré-Frontal/metabolismo , Galactose/farmacologia
2.
Int Urol Nephrol ; 55(1): 129-139, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35817991

RESUMO

BACKGROUND: Hemorrhagic cystitis often develops in patients treated with cyclophosphamide (CP). Vincamine (vinca alkaloid) is the source of the synthetic derivative vinpocetine (Vinpo). Worldwide, Vinpo is used as a cerebroprotective drug. As it has anti-oxidant, anti-thrombotic and anti-inflammatory effects but the power of Vinpo to prevent CP induced cystitis has not been studied. AIM OF STUDY: This research was planned to explore the effect of Vinpo (10-30 mg/kg, orally) administered 1 or 4 h before inducing cystitis by CP injection (300 mg/kg, i.p.) on the urinary bladder of mice. RESULTS: Administration of Vinpo 30 mg/kg, 4 h before CP injection ameliorated inflammatory markers. It reduced inducible nitric oxide synthase (iNOS), tumor necrosis factor- α (TNF-α), and BCL2 Associated X (Bax) expression in the bladder and increased the total antioxidant capacity level. Histological examination of the bladder has further supported these results. The present study suggests a protective effect of Vinpo (30 mg/kg, 4 h before CP injection) against CP-induced bladder inflammation. CONCLUSION: This proposes that Vinpo 30 mg/kg may become a promising pharmacological drug to prevent urinary adverse effects in patients treated with chemotherapy using CP.


Assuntos
Cistite , Alcaloides de Vinca , Camundongos , Animais , Bexiga Urinária/patologia , Ciclofosfamida/efeitos adversos , Estresse Oxidativo , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Alcaloides de Vinca/farmacologia , Alcaloides de Vinca/uso terapêutico , Apoptose
3.
Front Mol Biosci ; 10: 1306523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38357327

RESUMO

Background: High-fat diet-induced obesity is linked to suppression of aquaporins (AQPs) expression in different tissues. Both vitamin D and intermittent fasting were identified to enhance AQPs expression. In the urinary bladder, AQP-1 and AQP-3 mRNA transcripts were identified. Vitamin D has an impact on a variety of genes that encode proteins that control cell proliferation, differentiation, and death. Aim: To assess potential benefits of vitamin D and intermittent fasting (IF) and to explore alterations to the urinary bladder triggered by high-fat diet (HFD) in a rat model of obesity. Methods: Each of the 4 groups contained six adult male albino rats; control: a standard rodent chew for 12 weeks, HFD: HFD and fructose were administered orally via gastric gavage for 12 weeks, and vitamin D: HFD and fructose were administered orally for 8 weeks, then 4 weeks of intraperitoneal injection of vitamin D (5 microns/Kg/2 days) and IF group: Received intraperitoneal injections of vitamin D (5 microns/Kg/2 days) for 4 weeks after consumption of HFD and fructose orally for 8 weeks. The serum lipid profile was conducted at end of the experiment. In the bladder homogenates, the levels of oxidative stress indicators were assessed. Quantitative real-time PCR was performed on recently collected bladder samples. AQP-1 and AQP-3 immunohistochemistry was done. Results: When compared to the HFD group, the vitamin D and IF groups both demonstrated a substantial improvement in histopathological, immunohistochemical, biochemical, and molecular markers. Conclusion: In all examined parameters, IF exceeded vitamin D as a preventive factor for the urinary bladder deterioration.

4.
Front Neuroanat ; 16: 1012422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312298

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual cognitive decline. Strong antioxidants that inhibit free radicals, such as polyphenols, reduce the likelihood of developing oxidative stress-related degenerative diseases such as AD. Naringin, a flavonoid found in citrus fruit shown to be neuroprotective, reduce oxidative damage and minimize histopathological changes caused by ischemic reperfusion, enhance the long-term memory in AD animal models. This work aimed to comprehend the role of naringin in the defense of the cerebellum against aluminum chloride (AlCl3)-induced AD in rats by investigating the behavioral, neurochemical, immunohistochemical, and molecular mechanisms that underpin its possible neuroprotective effects. Twenty-four adult albino rats were divided into four groups (n = 6/group): (i) Control (C) received saline per oral (p.o.), (ii) Naringin(N)-received naringin (100 mg/kg/d) p.o, (iii) AlCl3-recived AlCl3 (100 mg/kg/d) p.o and (iv) AlCl3 + Naringin (AlCl3 + N) received both AlCl3 and naringin p.o for 21 days. Behavioral tests showed an increase in the time to reach the platform in Morris water maze, indicating memory impairment in the AlCl3-treated group, but co-administration of naringin showed significant improvement. The Rotarod test demonstrated a decrease in muscle coordination in the AlCl3-treated group, while it was improved in the AlCl3 + N group. Neurochemical analysis of the hippocampus and cerebellum revealed that AlCl3 significantly increased lipid peroxidation and oxidative stress and decreased levels of reduced glutathione. Administration of naringin ameliorated these neurochemical changes via its antioxidant properties. Cerebellar immunohistochemical expression for microtubule assembly (tau protein) and oxidative stress (iNOS) increased in A1C13-treated group. On the other hand, the expression of the autophagic marker (LC3) in the cerebellum showed a marked decline in AlCl3-treated group. Western blot analysis confirmed the cerebellar immunohistochemical findings. Collectively, these findings suggested that naringin could contribute to the combat of oxidative and autophagic stress in the cerebellum of AlCl3-induced AD.

5.
Cells ; 10(9)2021 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572126

RESUMO

Autophagy is a key metabolic process where cells can recycle its proteins and organelles to regenerate its own cellular building blocks. Chemotherapy is indispensable for cancer treatment but associated with various side-effects, including organ damage. Stem cell-based therapy is a promising approach for reducing chemotherapeutic side effects, however, one of its main culprits is the poor survival of transplanted stem cells in damaged tissues. Here, we aimed to test the effects of activating autophagy in adipose-derived mesenchymal stem/stromal cells (ADSCs) on the survival of ADSCs, and their therapeutic value in cisplatin-induced liver injury model. Autophagy was activated in ADSCs by rapamycin (50 nM/L) for two hours before transplantation and were compared to non-preconditioned ADSCs. Rapamycin preconditioning resulted in activated autophagy and improved survival of ADSCs achieved by increased autophagosomes, upregulated autophagy-specific LC3-II gene, decreased protein degradation/ubiquitination by downregulated p62 gene, downregulated mTOR gene, and finally, upregulated antiapoptotic BCL-2 gene. In addition, autophagic ADSCs transplantation in the cisplatin liver injury model, liver biochemical parameters (AST, ALT and albumin), lipid peroxidation (MDA), antioxidant profile (SOD and GPX) and histopathological picture were improved, approaching near-normal conditions. These promising autophagic ADSCs effects were achieved by modulation of components in TGF-ß1/Smad and PI3K-AKT signaling pathways, besides reducing NF-κB gene expression (marker for inflammation), reducing TGF-ß1 levels (marker for fibrosis) and increasing SDF-1 levels (liver regeneration marker) in liver. Therefore, current results highlight the importance of autophagy in augmenting the therapeutic potential of stem cell therapy in alleviating cisplatin-associated liver damage and opens the path for improved cell-based therapies, in general, and with chemotherapeutics, in particular.


Assuntos
Autofagia , Doença Hepática Crônica Induzida por Substâncias e Drogas/prevenção & controle , Células-Tronco Mesenquimais/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Smad/metabolismo , Transplante de Células-Tronco/métodos , Fator de Crescimento Transformador beta1/metabolismo , Animais , Antineoplásicos/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/etiologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Cisplatino/toxicidade , Feminino , Masculino , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Proteínas Smad/genética , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA