Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Environ Sci Pollut Res Int ; 31(17): 26019-26035, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492145

RESUMO

This study synthesized a new thiomalic acid-modified rice husk biochar (TMA-BC) as a versatile and eco-friendly sorbent. After undergoing chemical treatments, the mercerized rice husk biochar (NaOH-BC) and TMA-BC samples showed higher BET surface area values of 277.1 m2/g and 305.8 m2/g, respectively, compared to the pristine biochar (BC) sample, which had a surface area of 234.2 m2/g. In batch adsorption experiments, it was found that the highest removal efficiency for malachite green (MG) was achieved with TMA-BC, reaching 96.4%, while NaOH-BC and BC exhibited removal efficiencies of 38.6% and 27.9%, respectively, at pH 8. The engineered TMA-BC exhibited a super adsorption capacity of 104.17 mg/g for MG dye at pH 8.0 and 25 °C with a dosage of 2 g/L. The SEM, TEM, XPS, and FTIR spectroscopy analyses were performed to examine mesoporous features and successful TMA-BC carboxylic and thiol functional groups grafting on biochar. Electrostatic forces, such as π - π interactions, hydrogen bonding, and pore intrusion, were identified as key factors in the sorption of MG dye. As compared to single-solution adsorption experiments, the binary solution experiments performed at optimized dosages of undesired ions, such as humic acid, sodium dodecyl sulfate surfactant, NaCl, and NaSCN, reflected an increase in MG dye removal of 2.8%, 8.7%, 5.4%, and 12.7%, respectively, which was attributed to unique mesoporous features and grafted functional groups of TMA-BC. Furthermore, the TMA-BC showed promising reusability up to three cycles. Our study indicates that mediocre biochar modified with TMA can provide an eco-friendly and cost-effective alternative to commercially accessible adsorbents.


Assuntos
Corantes de Rosanilina , Poluentes Químicos da Água , Ligantes , Hidróxido de Sódio , Poluentes Químicos da Água/química , Cinética , Carvão Vegetal/química , Adsorção
2.
Int J Phytoremediation ; 26(2): 287-293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37501357

RESUMO

Contamination of aquatic ecosystems with organic and inorganic contaminants is a global threat due to their hazardous effects on the environment and human health. Floating treatment wetland (FTW) technology is a cost-effective and sustainable alternative to existing treatment approaches. It consists of a buoyant mat in which wetland plants can grow and develop their roots in a suspended manner and can be implemented to treat stormwater, municipal wastewater, and industrial effluents. Here we explored the potential of bacterial-augmented FTWs for the concurrent remediation of phenol and hexavalent chromium (Cr6+) contaminated water and evaluated treated water toxicity using Triticum aestivum L. (wheat) as a test plant. The FTWs carrying Phragmites australis L. (common reed) were inoculated with a consortium of four bacterial strains (Burkholderia phytofirmans PsJN, Acinetobacter lwofii ACRH76, Pseudomonas aeruginosa PJRS20, Bacillus sp. PJRS25) and evaluated for their potential to simultaneously remove phenol and chromium (Cr) from contaminated water. Results revealed that the FTWs efficiently improved water quality by removing phenol (86%) and Cr (80%), with combined use of P. australis and bacterial consortium after 50 days. The phytotoxicity assay demonstrated that the germination of wheat seed (96%) was significantly higher where bacterial-augmented FTWs treated water was used compared to untreated water. This pilot-scale study highlights that the combined application of wetland plants and bacterial consortium in FTWs is a promising approach for concomitant abatement of phenol and Cr from contaminated water, especially for developing countries like Pakistan where the application of advanced and expensive technologies is limited.


This pilot-scale research provides new interventions and information required for establishing a large-scale remediation framework for the effective, sustainable and eco-friendly remediation of phenol and Cr co-contaminated aquatic ecosystems, using bacterial augmented floating wetlands technology (FTWs).


Assuntos
Fenol , Poluentes Químicos da Água , Humanos , Áreas Alagadas , Ecossistema , Biodegradação Ambiental , Bactérias , Cromo , Fenóis , Triticum , Poluentes Químicos da Água/análise
3.
Int J Phytoremediation ; 26(6): 882-893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37933838

RESUMO

Due to industrialization and urbanization, the use of detergents inadvertently led to contamination of aquatic environments, thus posing potential threat to aquatic organisms and human health. One of the main components of detergents is linear alkylbenzene sulfonate (LAS), which can cause toxic effects on living organisms, particularly aquatic life in the environment. In this study, floating treatment wetlands (FTWs) mesocosms were developed and augmented with LAS-degrading bacteria. The plant species, Brachiaria mutica (Para grass), was vegetated to establish FTWs and bacterial consortium (1:1:1:1) of Pseudomonas aeruginosa strain PJRS20, Bacillus sp. BRRH60, Acinetobacter sp. strain CYRH21, and Burkholderia phytofirmans Ps.JN was augmented (free or immobilized) in these mesocosms. Results revealed that the FTWs removed LAS from the contaminated water and their augmentation with bacteria slightly increased LAS removal during course of the experiment. Maximum reduction in LAS concentration (94%), chemical oxygen demand (91%), biochemical oxygen demand (93%), and total organic carbon (91%) was observed in the contaminated water having FTWs augmented with bacterial consortium immobilized on polystyrene sheet. This study highlights that the FTWs supported with immobilized bacteria on polystyrene sheets can provide an eco-friendly and sustainable solution for the remediation of LAS-bearing water, especially for developing countries like Pakistan.


This pilot-scale study provided insights to resolve the detergent-contaminated wastewater issue, using floating treatment wetlands (FTWs) augmented with bacteria. The FTWs augmented with bacteria immobilized on a polystyrene sheet and vegetated with Brachiaria mutica led to high degradation of LAS, a toxic compound of detergent, from the contaminated water.


Assuntos
Detergentes , Poluentes Químicos da Água , Humanos , Áreas Alagadas , Poliestirenos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Bactérias , Água
4.
Int J Phytoremediation ; 26(3): 294-303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37493366

RESUMO

Under paddy soil conditions, rice plants are vulnerable to arsenic (As) accumulation, thus causing potential threat to human health. Here we investigated the influence of foliar-applied phosphorus (P: 10 and 20 mg L-1), silicon (Si: 0.6 and 1.5 g L-1) and selenium (Se: 5 and 10 mg L-1) on As accumulation, morphological and physiological attributes of two contrasting rice genotypes (KSK-133 and Super Basmati) under As stress (25 mg kg-1 as arsenate). Silicon foliar dressing significantly (p < 0.05) reduced grain As uptake (up to 67%) and improved rice growth and chlorophyll content (28-66%) in both rice genotypes over their controls. Phosphorus foliar application resulted in a notable decrease (17%) in grain As uptake of coarse rice genotype (KSK-133), while it slightly increased grain As uptake in the fine one (Super Basmati; 6%) compared to controls. However, foliar-applied Se did not show significant effects on rice plants growth attributes and As uptake in both genotypes. Similarly, biochemical and enzymatic attributes (i.e., lipid peroxidation, electrolyte leakage, peroxidase and catalase) were improved with Si application in rice plants, except for P treatment that was only effective for coarse one. Foliar-applied Si also resulted in reduced cancer risk and hazard quotient (< 0.10) for both rice genotypes. This study advances our understanding on critical role of different foliar-applied nutrients and rice genotypes, which is imperative to develop effective As remediation and management strategies in coarse and fine rice genotypes and protect human health.


This study provided new insights on the significance of foliar-applied phosphorus, silicon and selenium for the management and remediation of arsenic in fine (Super Basmati) and coarse (KSK-133) rice genotypes. Foliar-applied silicon was the most promising strategy to mitigate arsenic uptake and minimizing health risk in rice grain of both genotypes, while phosphorus was effective only for coarse one, thus showing a genotype dependent response. Interestingly, selenium foliar application had no significant effect on arsenic accumulation in both rice genotypes.


Assuntos
Arsênio , Oryza , Selênio , Poluentes do Solo , Humanos , Silício/análise , Silício/farmacologia , Fósforo , Oryza/genética , Poluentes do Solo/análise , Biodegradação Ambiental , Solo/química , Genótipo , Grão Comestível/química
5.
Heliyon ; 9(6): e17260, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484282

RESUMO

Apple cultivation is one of the most significant means of subsistence in the Kashmir region of the northwestern Himalayas. It is considered as the backbone of the region's economy. Apple cultivation in the region is dominated by a late maturing cultivar "Red Delicious" which usually on maturity causes glut in the market. In order to bring new cultivars in the cultivation, and to expand the maturity season, it is necessary to evaluate the new cultivars on fruit physico-chemical attributes which ultimately decide the market rates before recommending to farmers for cultivars adoption. Therefore, the current study was carried out to evaluate thirteen apple cultivars on physico-chemical attributes over two years, 2017 and 2018 under agro-climatic conditions of Kashmir region The results revealed that cultivars differed significantly in terms of physico-chemical properties. Cultivars with the highest and lowest values for initial fruit set, fruit drop, final fruit retention, and fruit firmness in 2017 did not follow the same trend in 2018. During 2017 and 2018, cultivar Mollie's Delicious possessed the highest fruit length (72.39 mm and 81.45 mm), fruit diameter (81.18 mm and 84.14 mm), and fruit weight (205.85 g and 247.16 g), whereas cultivar Baleman's Cider had the lowest values (50.76 mm and 52.83 mm, 60.10 mm and 62.08 mm, and 71.46 g and 86.94 g), respectively. The harvesting dates were quite spread out during both years of study. Cultivar Mollie's Delicious was harvested the earliest in both years, on August 5th, 2017 and August 8th, 2018. Cultivar Fuji Zehn Aztec was the last cultivar harvested in 2017 on October 2 and in 2018 on October 5. The maximum number of seeds per fruit was noticed in the cultivar Mollie's Delicious (8.34 and 8.71) during both 2017 and 2018, respectively. Cultivar Starkrimson had the fewest seeds per fruit in 2017 (7.11) and 2018 (7.42). Cultivar Baleman's Cider had the highest acidity in 2017 (0.63%) and 2018 (0.52%). In both 2017 (0.25%) and 2018 (0.23%), the Adam's Pearmain cultivar was the least acidic. Cultivar Allington Pippin (16.13 °Brix) and Red Gold (16.73 °Brix) had the highest TSS in 2017 and 2018, respectively, whereas Vance Delicious (12.30 °Brix) and Top Red (10.78 °Brix) had the lowest TSS in 2017 and 2018, respectively. The cultivars Mollie's Delicious and Red Gold had the highest total sugars (11.33 and 11.40%) in 2017 and 2018, respectively. Cultivar Baleman's Cider had the lowest total sugars (9.82%) in 2017 while Top Red (9.78%) in 2018. The cultivar Vance Delicious had the highest ratio of leaves to fruits in 2017 (55.44) and for Shalimar Apple-2 in 2018 (49.65). In 2017, cultivars Fuji Zehn Aztec (29.26) and Silver Spur (24.51), had the fewest leaves per fruit. The highest leaf chlorophyll content was recorded in cultivar Shireen (3.50 and 3.57 mg g-1 fresh weight) during the years 2017 and 2018, respectively. Cultivar Baleman's Cider had the lowest leaf chlorophyll content (2.15 mg g-1 fresh weight) during 2017, while cultivar Allington Pippin (2.09 mg g-1 fresh weight) had the lowest leaf chlorophyll content in 2018. The cultivars Fuji Zehn Aztec, with a yield efficiency of 0.78 kg/cm2 and Silver Spur with a yield efficiency of 1.14 kg/cm2 were the most yield efficient during the years 2017 and 2018, respectively. Cultivar Shalimar Apple-2 was least performing with yield efficiencies of 0.05 and 0.07 kg/cm2 during 2017 and 2018, respectively.The findings suggest that cultivar Mollie's Delicious commercially matures first and has the highest fruit length, diameter, and weight; hence, it can be a good option for cultivation so as to fetch the maximum price in the market when other cultivars are still maturing. Shalimar Apple-2 is precluded for cultivation due to least yield efficiency, whereas cultivars Fuji Zehn Aztec and Silver Spur are recommended to farmers for their higher yield efficiency.

6.
Diagnostics (Basel) ; 13(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37370986

RESUMO

It has been validated beyond doubt that High-Resolution Computed Tomography (HRCT) chest and to some extent chest radiographs have a role in corona virus disease-19 (COVID-19). Much less is known about the role of lung ultrasonography (LUS) in COVID-19. In this paper, our main purpose was to gauge the relationship between LUS and chest HRCT in reverse transcriptase polymerase chain reaction (RT-PCR) documented cases of COVID-19, as well as in those with high suspicion of COVID-19 with negative RT-PCR. It was a prospective study carried out at our tertiary care hospital, namely, SKIMS Soura. The total number of patients in this study were 152 (200 patients were selected out of which only 152 had undergone both LUS and chest HRCT). The patients were subjected to both LUS and chest HRCT. The radiologist who performed LUS was blinded to clinical findings and HRCT was evaluated by a radiologist with about a decade of experience. The LUS findings compatible with the disease were subpleural consolidations, B-lines and irregular pleural lines. Findings that were compatible with COVID-19 on chest HRCT were bibasilar, subpleural predominant ground glass opacities, crazy paving and consolidations. COVID-19-positive patients were taken up for chest HRCT for disease severity stratification and were also subjected to LUS. On HRCT chest, the imaging abnormalities compatible with COVID-19 were evident in 110 individuals (72.37%), and on Lung Ultrasound they were observed in 120 individuals (78.95%). Imaging of COVID-19 patients assessed by both LUS and HRCT chest,, showed a positive correlation (p < 0.0001). The study revealed a sensitivity of 88%, a specificity of 76.62%, a positive predictive value of 78.57% and a negative predictive value of 86.76%. None of the individuals with a diagnosis of COVID-19 on HRCT were missed on LUS. An excellent correlation was derived between the LUS score and CT total severity score (p < 0.0001 with a kappa of 0.431). Similar precision compared with chest HRCT in the detection of chest flaws in COVID-19 patients was obtained on LUS.

7.
Medicina (Kaunas) ; 59(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36984473

RESUMO

Background and Objectives: In December 2019, a flu-like illness began in the Chinese city of Wuhan. This sickness mainly affected the lungs, ranging from a minor respiratory tract infection to a severe lung involvement that mimicked the symptoms of Severe Acute Respiratory Syndrome (SARS). The World Health Organization (WHO) labelled this sickness as a pandemic in March 2020, after it quickly spread throughout the world population. It became clear, as the illness progressed, that people with concomitant illnesses, particularly diabetes mellitus (DM) and other immunocompromised states, were outmatched by this illness. This study was aimed to evaluate the correlation between Computed Tomographic Severity Score (CTSS) and underlying diabetes mellitus in coronavirus disease (COVID)-19 patients. Materials and Methods: This was a hospital-based prospective study in which a total of 152 patients with reverse transcriptase polymerase chain reaction (RT-PCR) positive COVID status who underwent high-resolution computed tomography (HRCT) of the chest were evaluated and categorized into mild, moderate and severe cases based on the extent of lung parenchymal involvement. A total score from 0-25 was given, based on the magnitude of lung involvement. Statistical analysis was used to derive a correlation between DM and CTSS, if any. Results: From our study, it was proven that patients with underlying diabetic status had more severe involvement of the lung as compared to non-diabetics, and it was found to be statistically significant (p = 0.024). Conclusions: On analysis of what we found based on the study, it can be concluded that patients with underlying diabetic status had a more prolonged and severe illness in comparison to non-diabetics, with higher CTSS in diabetics than in non-diabetics.


Assuntos
COVID-19 , Diabetes Mellitus , Humanos , COVID-19/complicações , Estudos Prospectivos , SARS-CoV-2 , Pulmão , Diabetes Mellitus/epidemiologia
8.
Viruses ; 15(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992503

RESUMO

Besides apple mosaic virus (ApMV), apple necrotic mosaic virus (ApNMV) has also been found to be associated with apple mosaic disease. Both viruses are unevenly distributed throughout the plant and their titer decreases variably with high temperatures, hence requiring proper tissue and time for early and real-time detection within plants. The present study was carried out to understand the distribution and titer of ApMV and ApNMV in apple trees from different plant parts (spatial) during different seasons (temporal) for the optimization of tissue and time for their timely detection. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR) was carried out to detect and quantify both viruses in the various plant parts of apple trees during different seasons. Depending on the availability of tissue, both ApMV and ApNMV were detected in all the plant parts during the spring season using RT-PCR. During the summer, both viruses were detected only in seeds and fruits, whereas they were detected in leaves and pedicel during the autumn season. The RT-qPCR results showed that during the spring, the ApMV and ApNMV expression was higher in leaves, whereas in the summer and autumn, the titer was mostly detected in seeds and leaves, respectively. The leaves in the spring and autumn seasons and the seeds in the summer season can be used as detection tissues through RT-PCR for early and rapid detection of ApMV and ApNMV. This study was validated on 7 cultivars of apples infected with both viruses. This will help to accurately sample and index the planting material well ahead of time, which will aid in the production of virus-free, quality planting material.


Assuntos
Ilarvirus , Malus , Vírus do Mosaico , Vírus de Plantas , Doenças das Plantas , Plantas
9.
J King Saud Univ Sci ; 35(4): 102603, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36844755

RESUMO

The 21st century will be indelible in the world as ruin of the outbreak of COVID-19 was arose in Wuhan, China has now spread all over the world, up to August 2020. This study was based on the factors affecting the epidemiology of this virus in human societies of global concern. We studied the articles published in journals on various aspects of nCoVID19. The Wikipedia and WHO situation reports have also been searched out for related information. Outcomes were followed up until 2020. The COVID-19 is a virus with pandemic potential which may continue to cause regular infection in human. The pandemic outbreak of COVID-19 threatened public health across the globe in form of system as reflected in the shape of emergency. Approximately 21 million humans are infected and 759,400 have lost their lives till 2020 in all over the world. We have described epidemiological features, reservoirs, transmission, incubation period, rate of fatality, management including recent clinical chemotherapeutic approach and preventive measurements and masses which are at risk of COVID19. This virus causes viral pneumonia when it attacks on respiratory system and multiple failure which can leads to life threatening complications. It is believed to be zoonotic importance although it is not clear from which animal and how it is transmitted. Zoonotic transmission of COVID-19 has not yet known by science. The current study will help to establish a baseline for early effective control of this rapidly spreading severe viral illness. The available data on COVID-19 indicates that older males with comorbidities would have been more infected, which can result in severe respiratory complications. Implementation of preventive measurements, investigation of proper chemotherapeutics and detection of cross species transmission agents must be ensured.

10.
Toxics ; 11(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36850985

RESUMO

Arsenic (As) is a toxic contaminant present in organic and inorganic forms in the environment. Nobiletin (NOB) is a polymethoxy flavone that has recently gained substantial consideration due to its curative impacts. The present experiment was conducted to assess the hepatoprotective efficiency of NOB on As-generated hepatotoxicity. Twenty-four adult rats were equally distributed into four groups and designated as control, As (50 mg/kg)-treated, As + NOB (50 mg/kg and 25 mg/kg, respectively), and NOB (25 mg/kg)-treated groups. After 30 days, experimental animals were decapitated, then blood and tissue samples were collected for further analysis. The group treated with As showed a significant decrease in the activity of antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione (GSH), glutathione reductase (GSR), and total antioxidant status (TAS), and a substantial increase in the accumulation of As in liver tissues, levels of total oxidant status (TOS), hydrogen peroxide (H2O2), and lipid peroxidation (TBARS). Significant increases in alanine aminotransferase (ALT), alkaline phosphatase (ALP), and aspartate aminotransferase (AST) levels were observed in As-treated rats. Moreover, nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, interleukin (IL)-6, and cyclo-oxygenase (COX)-2 activity, as well as the levels of pro-apoptotic markers (Bax, Caspase-3, and Caspase-9) were increased on exposure to As. In contrast, the anti-apoptotic marker (Bcl-2) level was significantly decreased. As administration showed a significant disturbance in hepatic tissue histology. However, cotreatment of NOB with As considerably increased the antioxidant enzyme activity, with a noteworthy reduction in the deposition of As in hepatic tissues, TBARS, and H2O2 levels. NOB-administrated rats showed considerable recovery in terms of inflammation, apoptosis, and histological damage. Hence, NOB can be considered a useful curative compound due to its medicinal properties against As-prompted hepatotoxicity.

11.
Chemosphere ; 322: 138151, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804633

RESUMO

Dyes contaminated water has caused various environmental and health impacts in developing countries especially Pakistan due to different industrial activities. This issue has been addressed in present study by fabricating biocompatible ionic liquid (IL) membranes for the remediation of Crystal violet (CV) dye from contaminated water. Novel ammonium-based IL such as Triethyl dimethyl ammonium sulfate ([C3A][C2H6]SO4); (A2) was synthesized and further functionalized with hydroxyapatite (HAp; extracted from refused fish scales) resulting in the formation of HA2. Furthermore, A2 and HA2 were then used to fabricate the cellulose acetate (CA) based membranes with different volume ratios. The physicochemical properties of membranes-based composite materials were investigated using FTIR, XRD, and TGA and used for the adsorption of CV in the closed batch study. In results, CA-HA2 (1:2) showed higher efficiency of 98% for CV reduction, after the contact time of 90 min. Kinetic studies showed that the adsorption of CV followed the pseudo-second-order kinetic model for all adsorbents. The antibacterial properties of the synthesized membrane were investigated against gram-positive strain, S. aureus and CA-A2 (1:1) showed better antibacterial properties against S. aureus. The developed membrane is sustainable to be used for the adsorption of CV and against bacteria.


Assuntos
Compostos de Amônio , Líquidos Iônicos , Poluentes Químicos da Água , Líquidos Iônicos/química , Cinética , Staphylococcus aureus , Corantes/química , Violeta Genciana , Água , Antibacterianos/farmacologia , Poluição da Água , Adsorção , Poluentes Químicos da Água/química
12.
Environ Sci Pollut Res Int ; 30(5): 13483-13494, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36136182

RESUMO

Polypropylene microplastics are the leading contaminant in aquatic environments, although research on their toxicity remains scarce. The proposed research focuses on the harmful consequences of acute exposure to polypropylene microplastics in Daphnia similis. This work converts widely available polypropylene bags into microplastics using xylene. FTIR findings demonstrated the lack of xylene residue in the produced polypropylene microplastic particles, which were spherical and ranged in size from 11.86 to 44.62 µm (FE-SEM). The results indicate that acute exposure to polypropylene microplastics causes immobility in D. similis. Ingestion of microplastics enhances the generation of reactive oxygen species (ROS), as shown by biochemical studies. Due to the production of free radicals in D. similis, the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) and a non-antioxidant enzyme of reduced glutathione (GSH) and also oxidative stress effects in lipid (lipid peroxidation - LPO), protein (carbonyl protein - CP) were increased. Additionally, the amount of the neurotransmitter enzyme acetylcholinesterase (AChE) activity was decreased. These findings indicate that the accumulation of polypropylene microplastics in the bodies of filter-feeding organisms should aggravate toxicity in the freshwater environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Polipropilenos , Daphnia , Acetilcolinesterase/metabolismo , Xilenos , Estresse Oxidativo , Ingestão de Alimentos , Água , Poluentes Químicos da Água/análise , Superóxido Dismutase/metabolismo , Glutationa Transferase/metabolismo
13.
Toxics ; 10(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36355933

RESUMO

Waterbirds may be a good indicator of harmful metal levels in aquatic environments. Waterbirds' organs and tissues were tested for the presence of pollutants, such as metals. However, very few reports describe the use of bird feathers and their prey in metal analysis. In the present research, seven metals were measured in the tissue, kidney, liver, and feathers of the Indian pond heron, the black-crowned night heron, and their prey species, including crabs, prawns, molluscs, and fishes from a freshwater lake. Metals were examined using an ECIL-4141-double beam atomic absorption spectrophotometer (DB-AAS). Metal concentrations differed considerably in the tissue, kidney, liver, and feathers of the Indian pond heron and black-crowned night heron (p < 0.001). Indeed, this research discovered a good correlation between the metals of prey species and the tissues, kidneys, liver, and feathers of waterbirds that were tested. The regression model explained that the Cyprinus carpio influence the accumulation of metals about 98.2% in tissues, Macrobrachium rosenbergii and Cyprinus carpio around 86.3% in the kidney, the Labeo rohita almost 47.2% in the liver and Labeo rohita nearly 93.2% on the feathers of the Indian pond heron. On the other hand, the Mystus vittatus, Cyprinus carpio, Labeo rohita influence about 98.8% in tissue, the Claris batrachus and Tilapia mossambica around 93.3% in kidney, the Mystus vittatus, Cyprinus carpio, about 93.2% in liver and the freshwater crab (Travancoriana schirnerae), freshwater prawn (Macrobrachium rosenbergii) and a fish (Cyprinus carpio) nearly 93.2% in feathers in the black-crowned night heron. This research evaluated metals in the dead carcasses of waterbirds, a non-invasive biomonitoring technique for pollution. Overall, the investigation revealed that the lake is severely contaminated with metals. Therefore, the management and protection of aquatic habitats, particularly freshwater lakes, should be enhanced to rescue wild species that rely on aquatic ecosystems and to ensure that people have access to clean drinking water.

14.
Molecules ; 27(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431952

RESUMO

Green synthesis of silver nanoparticles (AgNPs) has gained greater interest among chemists and researchers in this current scenario. The present research investigates the larvicidal and anti-proliferation activity of AgNPs derived from Knoxia sumatrensis aqueous leaf extract (K. sumatrensis-ALE) as a potential capping and reducing candidate. The synthesized AgNPs were characterized through-UV-spectra absorption peak at 425 nm. The XRD and FT-IR studied displayed the crystalline nature and presence of functional groups in prepared samples. FE-SEM showed the hexagonal shape of NPs with the size of 7.73 to 32.84 nm. The synthesized AgNPs displayed superior antioxidant and anti-proliferative activity (IC50 53.29 µg/mL) of breast cancer cell line (MCF-7). Additionally, larvicidal activity against mosquito vector Culex quinquefasciatus larvae delivered (LC50-0.40, mg/L, and LC90-15.83) significant mortality rate post treatment with synthesized AgNPs. Overall, the present research illustrates that the synthesized AgNPs have high biological potential and present a perfect contender in the pharmacological and mosquitocidal arena.


Assuntos
Inseticidas , Nanopartículas Metálicas , Rubiaceae , Animais , Prata/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Inseticidas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rubiaceae/metabolismo
15.
Sci Rep ; 12(1): 13205, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915126

RESUMO

In the era of anthropocene, global warming tends to alter the distribution range of the plant species. Highly fragile to such changes are the species that are endemic, inhabit higher elevations and show narrow distribution ranges. Predicting and plotting the appropriate suitable habitats and keeping knowledge of how climate change will affect future distribution become imperative for designing effective conservation strategies. In the current study we have used BIOMOD ensemble forecasting to study the current and predict the future potential distribution of Dactylorhiza hatagirea and Rheum webbianum and describe their niche dynamics in Himalayan biodiversity hotspots under climate change scenarios using ecospat R package. Results reveal sufficient internal evaluation metrics with area under curve (AUC) and true skill statistic (TSS) values greater than 0.8 i.e. 0.93 and 0.98 and 0.82 and 0.90 for D. hatageria and R. webbianum respectively, which signifies robustness of the model. Among different bioclimatic variables, bio_1, bio_3, bio_8, bio_14 and bio_15 were the most influential, showing greater impact on the potential distribution of these plant species. Range change analysis showed that both the studied species will show significant contraction of their suitable habitats under future climatic scenarios. Representative Concentration Pathway (RCP) 8.5 for the year 2070, indicate that the suitable habitats could be reduced by about 51.41% and 70.57% for D. hatagirea and R. webbianum respectively. The results of the niche comparisons between the current and future climatic scenarios showed moderate level of niche overlap for all the pairs with D. hatageria showing 61% overlap for current vs. RCP4.5 2050 and R. webbianum reflects 68% overlap for current vs. RCP4.5 2050. Furthermore, the PCA analysis revealed that climatic conditions for both the species vary significantly between current and future scenarios. The similarity and equivalence test showed that the niche between present and future climate change scenarios is comparable but not identical. From the current study we concluded that the influence of climate change on the habitat distribution of these plant species in the Himalayan biodiversity hotspots can be considered very severe. Drastic reduction in overall habitat suitability poses a high risk of species extinction and thereby threatens to alter the functions and services of these fragile ecosystems. Present results can be used by conservationists for mitigating the biodiversity decline and exploring undocumented populations on one hand and by policymakers in implementing the policy of conservation of species by launching species recovery programmes in future on the other. The outcomes of this study can contribute substantially to understand the consequences of climate change in the Himalayan biodiversity hotspots.


Assuntos
Mudança Climática , Ecossistema , Orchidaceae , Rheum , Biodiversidade , Extinção Biológica , Plantas
16.
Saudi J Biol Sci ; 29(2): 721-729, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35197737

RESUMO

Contamination of agricultural soils with heavy metals (HMs) has posed major threat to the environment as well as human health. The aim of this study was to appraise the efficiency of key-antioxidant enzymes in enhancing plants' tolerance to HMs (heavy metals) like copper (Cu) and Cadmium (Cd), under the action of methyl jasmonate (Me-JA) in Cajanus cajan L. Seeds of C. cajan treated with Me-JA (0, 1 nM) were discretely subjected to noxious concentrations of Cu and Cd (0, 1, 5 mM) and raised for 12 days under controlled conditions in plant growth chamber for biochemical analysis. In contrast to Cd, Cu triggered oxidative stress more significantly (44.54% in 5 mM Cu increase in MDA as compared to control) and prominently thereby affecting plants' physiological and biochemical attributes. By activating the antioxidant machinery, Me-JA pre-treatment reduced HMs-induced oxidative stress, increased proline production, glutathione (41.95% under 5 mM Cu when treated with 1 nM Me-JA treatment) and ascorbic acid content by 160.4 % under aforemtioned treatments thus improving the redox status. Thus, in light of this our results put forward a firm basis of the positive role that Me-JA might play in the mitigation of oxidative stress caused due to HMs stress by stimulating antioxidant defense system leading to overall improvement of growth of C. cajan seedlings.

17.
Plants (Basel) ; 11(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35161385

RESUMO

Different strategies including the exogenous use of micronutrient-chelated amino acids are being employed for better crop yield with limited fresh water for irrigation. The present study was conducted to assess the effects of foliar-applied Zn-lysine (Zn-Lys) on maize growth and yield under limited irrigation, in relation to physio-biochemical mechanisms such as the plant-water relations, photosynthetic efficiency, antioxidant defense mechanism, amino acid accumulation and nutrient acquisition. The experiment comprised two maize cultivars (MMRI and Pearl), two irrigation levels and three levels of Zn-Lys (0.25, 0.5 and 0.75%). Zn-Lys fertigation was found to be effective in reducing the negative impacts of limited water supply on grain yield, associated with improved photosynthetic efficiency, water relations, antioxidative defense mechanism and reduced lipid peroxidation in both maize cultivars. Zn-Lys-induced improvement in antioxidative mechanisms was associated with improved content of non-enzymatic antioxidants and activities of antioxidant enzymes. Foliar-fertigation with Zn-Lys also significantly improved the contents of various amino acids including Lys, as well as uptake of nutrients in both maize cultivars. In conclusion, the 0.5% level of Zn-Lys was found to be effective in ameliorating the negative impacts of water stress for better grain yield in both maize cultivars that can also be used as an important environment-friendly source of Zn to fulfill maize Zn deficiency.

18.
Plants (Basel) ; 11(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35161446

RESUMO

Changing environmental conditions, fresh water shortages for irrigation and the rapid increase in world population have created the problems of food insecurity and malnutrition. Different strategies, including the development of water stress-tolerant, high-yielding genotypes through breeding are used to fulfil the world food demand. The present study was conducted for the selection of high-yielding, drought-tolerant wheat genotypes, considering different morpho-physio-biochemical, agronomic and yield attributes in relation to the stress tolerance indices (STI). The experiment was carried out in field in a split-plot arrangement. Water deficit stress was maintained based on the number of irrigations. All genotypes showed a differential decreasing trend in different agronomic traits. However, the increasing or decreasing trend in leaf photosynthetic pigments, non-enzymatic and enzymatic antioxidants under limited water supply also found to be genotype-specific. Genotypes MP1, MP3, MP5, MP8 and MP10 performed better regarding the yield performance under water deficit stress, which was associated with their better maintenance of water relations, photosynthetic pigments and antioxidative defense mechanisms. In conclusion, the physio-biochemical mechanisms should also be considered as the part of breeding programs for the selection of stress-tolerant genotypes, along with agronomic traits, in wheat.

19.
J Trace Elem Med Biol ; 69: 126878, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34688058

RESUMO

BACKGROUND: Green nanoparticles are subjected as an immunostimulant against bacterial pathogens. METHODS: Murraya koenigii berry extract-based synthesized zinc oxide nanoparticles (Mb-ZnO NPs) and selenium nanoparticles (Mb-Se NPs) were relatively analyzed for immunostimulation in serum and mucus fish Oreochromis mossambicus against Aeromonas hydrophila infections. Initial minimum inhibitory concentration (MIC) was determined for both Mb-ZnO NPs and Mb-Se NPs followed by specific growth rate (SGR), antioxidant level (Superoxide dismutase activity (SOD), Catalase activity (CA), and Glutathione peroxidase activity (GPx)), and immune parameters Myeloperoxidase activity (MPO), Respiratory burst activity (RBA), Lysozyme activity (LYZ), Alkaline phosphatase activity (ALP), Serum antiprotease activity and Natural complement activity (NAC). RESULTS: The potential bacterial inhibition property of Mb-ZnO NPs and Mb-Se NPs exhibited the most negligible concentration of 25 and 15 µg mL-1, respectively, against A. hydrophila. In addition, Mb-ZnO NPs and Mb-Se NPs exhibited 70-80 % and 90-95 % diminished biofilm activity at 50 µg mL-1 that was viewed under an inverted research microscope and confocal laser scanning microscopy (CLSM). Protein leakage and nucleic acid leakage assay quantified oozed out protein and nucleic acid from A. hydrophila that confirms Mb-Se NPs exhibited vigorous antibacterial activity than Mb-ZnO NPs at tested concentrations. Oreochromis mossambicus fed with Mb-ZnO NPs and Mb-Se NPs supplemented diet at different concentrations (0.5 mg/kg, 1 mg/kg and 2 mg/kg) improved SGR along with a rise in the immune response of those fishes against A. hydrophila infection. Serum and mucus of fish fed with Mb-Se NPs supplemented diet exhibited a significant rise in antioxidant level SOD, CA and GPx at a dosage of 2 mg/kg. Likewise, lipid peroxidation assay detected significantly diminished oxidative stress in the serum and mucus of fish fed with Mb-Se NPs supplemented diet (2 mg/kg). Enhanced immune parameters in serum and mucus of fish fed with Mb-Se NPs supplemented diet determined by MPO, RBA, LYZ, ALP, Serum antiprotease activity and NAC. CONCLUSION: Thus O. mossambicus fed with Mb-Se NPs supplemented diet was less prone to become infected by aquatic pathogen A. hydrophila established by challenge study. On the whole, Mb-Se NPs supplemented diet ensured the rise in antioxidant response that boosts the immune responses and reduces the chance of getting infected against A. hydrophila infections.


Assuntos
Aeromonas hydrophila , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Nanopartículas , Ácidos Nucleicos , Selênio , Tilápia , Óxido de Zinco , Ração Animal/análise , Animais , Antioxidantes , Dieta , Suplementos Nutricionais/análise , Resistência à Doença , Doenças dos Peixes/microbiologia , Água Doce , Infecções por Bactérias Gram-Negativas/veterinária , Inibidores de Proteases , Selênio/farmacologia , Superóxido Dismutase , Tilápia/microbiologia , Óxido de Zinco/farmacologia
20.
Saudi J Biol Sci ; 28(10): 5986-5992, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34588915

RESUMO

Investigation of genetic variability and population relationship of 50 accessions of the apricot (Prunus armeniaca L.) was carried out using ISSR markers. The results revealed that the number of alleles per locus varied from 4 to 8 with a mean value of 6.75, and the mean effective number of alleles (Ne) per locus was 1.54. Similarly, the polymorphic information content (PIC) values ranged from 0.464 to 0.424, with a mean value of 0.424. The mean heterozygosity, marker index, resolving power, and effective multiplex ratio (EMR) ranged from 0.001 to 0.002, 0.01-0.06, 1.76-3.84, and 1-4.12. The dendrogram clustered genotypes into two main clades based on their origins. The population structure revealed two sub-populations with some admixtures. The average expected heterozygosity and population differentiation within two sub-populations was 0.1428 and 0.216, respectively. The results outcome reveals that the four ISSR markers comprehensively separated the indigenous germplasm from the exotic germplasm. The genetic divergence within indigenous genotypes and exotic genotypes could allow for future insights into apricot breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA