RESUMO
The oxidation of Carbon monoxide (CO) to Carbon dioxide (CO2) is one of the most extensively investigated reactions in the field of heterogeneous catalysis, and it occurs via molecular rearrangements induced by catalytic metal atoms with oxygen intermediates. CO oxidation and CO2 capture are instrumental processes in the reduction of green-house gas emissions, both of which are used in low-temperature CO oxidation in the catalytic converters of vehicles. CO oxidation and CO2 adsorption at different temperatures are evaluated for palladium-supported silica aerogel (Pd/SiO2). The synthesized catalyst was active and stable for low-temperature CO oxidation. The catalytic activity was enhanced after the first cycle due to the reconditioning of the catalyst's pores. It was found that the presence of oxide forms of palladium in the SiO2 microstructure, influences the performance of the catalysts due to oxygen vacancies that increases the frequency of active sites. CO2 gas adsorption onto Pd/SiO2 was investigated at a wide-ranging temperature from 16 to 120 °C and pressures â¼1 MPa as determined from the isotherms that were evaluated, where CO2 showed the highest equilibrium adsorption capacity at 16 °C. The Langmuir model was employed to study the equilibrium adsorption behavior. Finally, the effect of moisture on CO oxidation and CO2 adsorption was considered to account for usage in real-world applications. Overall, mesoporous Pd/SiO2 aerogel shows potential as a material capable of removing CO from the environment and capturing CO2 at low temperatures.
RESUMO
Since the early spring of 2020, the coronavirus pandemic (COVID-19) outbreak has hindered traditional face-to-face teaching and hands-on, traditional delivery of laboratory courses, forcing universities to migrate from the traditional way of teaching to a remote online approach. Although few studies addressed the pandemic's impact on educational outcomes, no studies are found to investigate the impact of the remote online teaching approach on laboratory courses. This paper highlights the impact of the online teaching approach, coupled with flipped learning pedagogy, as a substitute for traditional laboratories. The course learning outcomes and assessment tools are analyzed and discussed for 46 students enrolled in the Unit Operations Laboratory course in the chemical engineering program at Qatar University. Results show that the course learning outcomes are achieved effectively using the hybrid online-flipped learning pedagogy, which can be considered for computerized traditional laboratories as a moderation solution to alleviate pandemic COVID-19 confinement on learning outcome. This methodology can also be sustained in the future to facilitate the teaching of such lab courses, even in normal conditions, to optimize the resources and avail the delivery of such courses to a larger audience who may have various obstacles to attending traditional lab courses.
RESUMO
Polysulfone membranes exhibit resistance to high temperature with low manufacturing cost and high efficiency in the separation process. The composition of gases is an important step that estimates the efficiency of separation in membranes. As membrane types are currently becoming in demand for CO2/CH4 segregation, polysulfone will be an advantageous alternative to have in further studies. Therefore, research is undertaken in this study to evaluate two solvents: chloroform (CF) and tetrahydrofuran (THF). These solvents are tested for casting polymeric membranes from polysulfone (PSF) to separate every single component from a binary gas mixture of CO2/CH4. In addition, the effect of gas pressure was conducted from 1 to 10 bar on the behavior of the permeability and selectivity. The results refer to the fact that the maximum permeability of CO2 and CH4 for THF is 62.32 and 2.06 barrer at 1 and 2 bars, respectively. Further, the maximum permeability of CF is 57.59 and 2.12 barrer at 1 and 2 bars, respectively. The outcome selectivity values are 48 and 36 for THF and CF at 1 bar, accordingly. Furthermore, the study declares that with the increase in pressure, the permeability and selectivity values drop for CF and THF. The performance for polysulfone (PSF) membrane that is manufactured with THF is superior to that of CF relative to the Robeson upper bound. Therefore, through the results, it can be deduced that the solvent during in-situ synthesis has a significant influence on the gas separation of a binary mixture of CO2/CH4.
RESUMO
Perovskite solar cells (PSCs) expressed great potentials for offering a feasible alternative to conventional photovoltaic technologies. 2D/3D hybrid PSCs, where a 2D capping layer is used over the 3D film to avoid the instability issues associated with perovskite film, have been reported with improved stabilities and high power conversion efficiencies (PCE). However, the profound analysis of the PSCs with prolonged operational lifetime still needs to be described further. Heading towards efficient and long-life PSCs, in-depth insight into the complicated degradation processes and charge dynamics occurring at PSCs' interfaces is vital. In particular, the Au/HTM/perovskite interface got a substantial consideration due to the quest for better charge transfer; and this interface is debatably the trickiest to explain and analyze. In this study, multiple characterization techniques were put together to understand thoroughly the processes that occur at the Au/HTM/perovskite interface. Inquest analysis using current-voltage (I-V), electric field induced second harmonic generation (EFISHG), and impedance spectroscopy (IS) was performed. These techniques showed that the degradation at the Au/HTM/perovskite interface significantly contribute to the increase of charge accumulation and change in impedance value of the PSCs, hence resulting in efficiency fading. The 3D and 2D/3D hybrid cells, with PCEs of 18.87% and 20.21%, respectively, were used in this study, and the analysis was performed over the aging time of 5000 h. Our findings propose that the Au/HTM/perovskite interface engineering is exclusively essential for attaining a reliable performance of the PSCs and provides a new perspective towards the stability enhancement for the perovskite-based future emerging photovoltaic technology.
RESUMO
Hybrid chitosan-resorcinol/formaldehyde xerogels were synthesized, and the effect of including minor quantities of chitosan on the consequent activated carbon was investigated. The resulting activated carbon were characterized by different techniques. Clear changes were found in the structure of activated carbon as a result of including chitosan in the synthesis. The results showed that the disorder ratio of crystal lattice decreased from 0.750 to 0.628 when increasing the concentration of chitosan from 0 to 0.037 wt%. The micropores increased from ~0.3% to ~1.0%, mesopores increased from ~11.2% to ~32.9% and macropores decreased from ~88.4% to ~66.1%. The total pore volume decreased from 1.040 to 0.238 cm3/g and the total pore surface area decreased from 912.3 to 554.4 m2/g. On the other hand, the average pore width decreased from 2.3 to 0.8 nm and the average particle size decreased from 224 to 149 nm. Nano-scale Scanning Electron Microscope (NanoSEM) morphology indicated a critical composition of chitosan (0.022 wt%) that affects the structure and thermal stability of activated carbon produced.
RESUMO
In this article, zeolitic-imidazolate framework-8 (ZIF-8) and its mixed metal CoZn-ZIF-8 were synthesized via a rapid microwave method. The products were characterized by Raman spectroscopy, XPS, XRD, EDX, TEM, NanoSEM, TGA, and DSC. The gas adsorption properties of samples were determined using C3 and C4 hydrocarbons, including propane, propylene, isobutane and n-butane at a temperature of 25 °C. The adsorption equilibrium and kinetics of these gases on various ZIFs were studied. It was noted that ZIF-8 and mixed metal CoZn-ZIF-8 samples start to adsorb these gases after certain pressures which are believed to result in the opening of their nano-gates (i.e., 6-membered rings) to allow the entry of gas molecules. The nanogate opening pressure value (p0) for each ZIF towards different gases was determined by fitting adsorption equilibrium data against a modified form of the Langmuir adsorption isotherm model. It was observed that the value of p0 differs significantly for each gas and to various extents for various ZIFs. Therefore, it is possible that the distinct values of p0 afford a unique technique to separate and purify these gases at the industrial scale. The overall mass transfer coefficient values of the adsorption process were also investigated.
RESUMO
Silica nanosheets (SiO2 NS) are considered to be a promising material in clinical practice for diagnosis and therapy applications. However, an appropriate surface functionalization is essential to guarantee high biocompatibility and molecule loading ability. Although SiO2 NS are chemically stable, its effects on immune systems are still being explored. In this work, we successfully synthesized a novel 2D multilayer SiO2 NS and SiO2 NS coated with carbon (C/SiO2 NS), and evaluated their impact on human Peripheral Blood Mononuclear Cells (PBMCs) and some immune cell subpopulations. We demonstrated that the immune response is strongly dependent on the surface functionalities of the SiO2 NS. Ex vivo experiments showed an increase in biocompatibility of C/SiO2 NS compared to SiO2 NS, resulting in a lowering of hemoglobin release together with a reduction in cellular toxicity and cellular activation. However, none of them are directly involved in the activation of the acute inflammation process with a consequent release of pro-inflammatory cytokines. The obtained results provide an important direction towards the biomedical applications of silica nanosheets, rendering them an attractive material for the development of future immunological therapies.
Assuntos
Carbono/farmacologia , Linfócitos/metabolismo , Nanopartículas/química , Dióxido de Silício/farmacologia , Adulto , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Carbono/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Linfócitos/efeitos dos fármacos , Pessoa de Meia-Idade , Nanopartículas/ultraestrutura , Espectroscopia Fotoeletrônica , Dióxido de Silício/química , Propriedades de Superfície , Fator de Necrose Tumoral alfa/metabolismo , Difração de Raios XRESUMO
The data presented in this article are related to the research article entitled "Novel controlled synthesis of nanoporous carbon nanorods from resorcinol-formaldehyde xerogels" (Awadallah-F and Al-Muhtaseb, 2017) [1]. This article describes the novel controlled approach of nanoporous carbon nanorods synthesis from resorcinol/formaldehyde xerogels. The field dataset is made publicly available to enable critical or extended analyzes.
RESUMO
Organic-inorganic halide perovskites have rapidly grown as favorable materials for photovoltaic applications, but accomplishing long-term stability is still a major research problem. This work demonstrates a new insight on instability and degradation factors in CH3NH3PbI3 perovskite solar cells aging with time in open air. X-ray photoelectron spectroscopy (XPS) has been used to investigate the compositional changes caused by device degradation over the period of 1000 hrs. XPS spectra confirm the migration of metallic ions from the bottom electrode (ITO) as a key factor causing the chemical composition change in the perovskite layer besides the diffusion of oxygen. XPS results are in good agreement with the crystallographic marks. Glow discharge optical emission spectrometry (GD-OES) has also been performed on the samples to correlate the XPS results. Based on the experimental results, fundamental features that account for the instability in the perovskite solar cell is discussed.
RESUMO
Molecularly engineered novel dopant-free hole-transporting materials for perovskite solar cells (PSCs) combined with mixed-perovskite (FAPbI3 )0.85 (MAPbBr3 )0.15 (MA: CH3 NH3+ , FA: NH=CHNH3+ ) that exhibit an excellent power conversion efficiency of 18.9% under AM 1.5 conditions are investigated. The mobilities of FA-CN, and TPA-CN are determined to be 1.2 × 10-4 cm2 V-1 s-1 and 1.1 × 10-4 cm2 V-1 s-1 , respectively. Exceptional stability up to 500 h is measured with the PSC based on FA-CN. Additionally, it is found that the maximum power output collected after 1300 h remained 65% of its initial value. This opens up new avenue for efficient and stable PSCs exploring new materials as alternatives to Spiro-OMeTAD.
RESUMO
Organic open frameworks with well-defined micropore (pore dimensions below 2 nm) structure are attractive next-generation materials for gas sorption, storage, catalysis and molecular level separations. Polymers of intrinsic microporosity (PIMs) represent a paradigm shift in conceptualizing molecular sieves from conventional ordered frameworks to disordered frameworks with heterogeneous distributions of microporosity. PIMs contain interconnected regions of micropores with high gas permeability but with a level of heterogeneity that compromises their molecular selectivity. Here we report controllable thermal oxidative crosslinking of PIMs by heat treatment in the presence of trace amounts of oxygen. The resulting covalently crosslinked networks are thermally and chemically stable, mechanically flexible and have remarkable selectivity at permeability that is three orders of magnitude higher than commercial polymeric membranes. This study demonstrates that controlled thermochemical reactions can delicately tune the topological structure of channels and pores within microporous polymers and their molecular sieving properties.
RESUMO
High-performance membranes are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. The next-generation membranes for these processes are based on molecular sieving materials to simultaneously achieve high throughput and selectivity. Membranes made from polymeric molecular sieves such as polymers of intrinsic microporosity (pore size<2 nm) are especially interesting in being solution processable and highly permeable but currently have modest selectivity. Here we report photo-oxidative surface modification of membranes made of a polymer of intrinsic microporosity. The ultraviolet light field, localized to a near-surface domain, induces reactive ozone that collapses the microporous polymer framework. The rapid, near-surface densification results in asymmetric membranes with a superior selectivity in gas separation while maintaining an apparent permeability that is two orders of magnitude greater than commercially available polymeric membranes. The oxidative chain scission induced by ultraviolet irradiation also indicates the potential application of the polymer in photolithography technology.
RESUMO
Osmotic shock in a vesicle or cell is the stress build-up and subsequent rupture of the phospholipid membrane that occurs when a relatively high concentration of salt is unable to cross the membrane and instead an inflow of water alleviates the salt concentration gradient. This is a well-known failure mechanism for cells and vesicles (for example, hypotonic shock) and metal alloys (for example, hydrogen embrittlement). We propose the concept of collective osmotic shock, whereby a coordinated explosive fracture resulting from multiplexing the singular effects of osmotic shock at discrete sites within an ordered material results in regular bicontinuous structures. The concept is demonstrated here using self-assembled block copolymer micelles, yet it is applicable to organized heterogeneous materials where a minority component can be selectively degraded and solvated whilst ensconced in a matrix capable of plastic deformation. We discuss the application of these self-supported, perforated multilayer materials in photonics, nanofiltration and optoelectronics.
RESUMO
An overview on the preparation and properties of resorcinol-formaldehyde (RF) organic and carbon gels reveals the fascinating and remarkably flexible properties of RF carbon and organic gels and how these properties are related to the synthesis and processing conditions. The structural properties can be easily tailored by rigidly controlling such conditions. However, slight variations in some conditions may cause drastic variations in the structural characteristics, and hence properties. Therefore, the effects of different conditions must be well-understood before attempting to tailor organic or carbon gels to specific applications. The most important factors that affect the properties of an organic gel are the precursor concentrations, the catalyst type and concentration, the time and temperature of curing, and the drying method. In addition to these factors, characteristics of activated carbon gels also depend on the pyrolysis temperature and the activation method. These conditions impact the structural and performance characteristics significantly.
Assuntos
Carbono/química , Formaldeído/química , Géis/química , Resorcinóis/química , Catálise , Metais/química , Solventes/químicaRESUMO
Batch experiments were carried out to evaluate the biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel pellets in a bubble column bioreactor at different conditions. The bacteria were activated and gradually acclimatized to high concentrations of phenol of up to 300 mg/l. The experimental results indicated that the biodegradation capabilities of P. putida are highly affected by temperature, pH, initial phenol concentration and the abundance of the biomass. The biodegradation rate is optimized at 30 degrees C, a pH of 7 and phenol concentration of 75 mg/l. Higher phenol concentrations inhibited the biomass and reduced the biodegradation rate. At high phenol concentration, the PVA particle size was found to have negligible effect on the biodegradation rate. However, for low concentrations, the biodegradation rate increased slightly with decreasing particle size. Other contaminants such heavy metals and sulfates showed no effect on the biodegradation process. Modeling of the biodegradation of phenol indicated that the Haldane inhibitory model gave better fit of the experimental data than the Monod model, which ignores the inhibitory effects of phenol.
Assuntos
Biodegradação Ambiental , Fenol/metabolismo , Pseudomonas putida/metabolismo , Biomassa , Reatores Biológicos , Géis , Concentração de Íons de Hidrogênio , Cinética , Álcool de Polivinil , TemperaturaRESUMO
The use of a locally prepared date-pit activated carbon and the commercially available BDH activated carbon for the removal of trivalent aluminum from aqueous solutions was examined at various conditions. In the acidic range of aluminum solubility (up to pH value of 4), both adsorbents exhibited maximum (almost equivalent) capacities for adsorbing aluminum at the pH value of 4. Date-pit activated carbon was more capable of adsorbing traces or low concentrations of aluminum ions in the solution. At low initial concentrations of aluminum and low pH, the uptake of aluminum using date-pit activated carbon was 0.305 mg/g, while that using BDH activated carbon was only 0.021 mg/g. However, the BDH activated carbon was more effective in adsorbing aluminum with high concentrations and low pH. Furthermore, date-pit activated carbon exhibited higher initial adsorption rates as compared to BDH, which showed higher rates at longer periods of time.