Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biogerontology ; 24(2): 163-181, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36626035

RESUMO

Volume hyposensitivity resulting from impaired sympathetic detrusor relaxation during bladder filling contributes to detrusor underactivity (DU) associated with aging. Detrusor tension regulation provides an adaptive sensory input of bladder volume to the brainstem and is challenged by physiological stressors superimposed upon biological aging. We recently showed that HCN channels have a stabilizing role in detrusor sympathetic relaxation. While mature mice maintain homeostasis in the face of stressors, old mice are not always capable. In old mice, there is a dichotomous phenotype, in which resilient mice adapt and maintain homeostasis, while non-resilient mice fail to maintain physiologic homeostasis. In this DU model, we used cystometry as a stressor to categorize mice as old-responders (old-R, develop a filling/voiding cycle) or old-non-responders (old-NR, fail to develop a filling/voiding cycle; fluctuating high pressures and continuous leaking), while also assessing functional and molecular differences. Lamotrigine (HCN activator)-induced bladder relaxation is diminished in old-NR mice following HCN-blockade. Relaxation responses to NS 1619 were reduced in old-NR mice, with the effect lost following HCN-blockade. However, RNA-sequencing revealed no differences in HCN gene expression and electrophysiology studies showed similar percentage of detrusor myocytes expressing HCN (Ih) current between old-R and old-NR mice. Our murine model of DU further defines a role for HCN, with failure of adaptive recalibration of HCN participation and intensity of HCN-mediated stabilization, while genomic studies show upregulated myofibroblast and fibrosis pathways and downregulated neurotransmitter-degradation pathways in old-NR mice. Thus, the DU phenotype is multifactorial and represents the accumulation of age-associated loss in homeostatic mechanisms.


Assuntos
Bexiga Inativa , Camundongos , Animais , Bexiga Urinária , Envelhecimento/fisiologia
2.
Am J Physiol Regul Integr Comp Physiol ; 323(1): R110-R122, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503519

RESUMO

Control of urinary continence is predicated on sensory signaling about bladder volume. Bladder sensory nerve activity is dependent on tension, implicating autonomic control over detrusor myocyte activity during bladder filling. Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels are known contributors to bladder control, but their mechanism of action is not well understood. The lack of a definitive identification of cell type(s) expressing HCN in the bladder presents a significant knowledge gap. We recently reported a complete transcriptomic atlas of the C57BL/6 mouse bladder showing the dominant HCN paralog in mouse bladder, Hcn1, is limited to a subpopulation of detrusor smooth myocytes (DSMs). Here, we report details of these findings, along with results of patch-clamp experiments, immunohistochemistry, and functional myobath/tension experiments in bladder strips. With the use of a transgenic mouse expressing fluorescence-tagged α-smooth muscle actin, our data confirmed location and function of DSM HCN channels. Despite previous associations of HCN with postulated bladder interstitial cells, neither evidence of specific interstitial cell types nor an association of nonmyocytes with HCN was discovered. We confirm that HCN activation participates in reducing sustained (tonic) detrusor tension via cAMP, with no effect on intermittent (phasic) detrusor activity. In contrast, blockade of HCN increases phasic activity induced by a protein kinase A (PKA) blocker or a large-conductance Ca2+-activated K+ (BK) channel opener. Our findings, therefore, suggest a central role for detrusor myocyte HCN in regulating and constraining detrusor myocyte activity during bladder filling.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Células Intersticiais de Cajal , Adrenérgicos , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Células Intersticiais de Cajal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos Cíclicos/metabolismo
4.
Aging Cell ; 21(1): e13525, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34962049

RESUMO

Aging and senescence impact CD4 T helper cell (Th) subset differentiation during influenza infection. In the lungs of infected aged mice, there were significantly greater percentages of Th cells expressing the transcription factor FoxP3, indicative of regulatory CD4 T cells (Treg), when compared to young. TGF-beta levels, which drive FoxP3 expression, were also higher in the bronchoalveolar lavage of aged mice and blocking TGF-beta reduced the percentage of FoxP3+ Th in aged lungs during influenza infection. Since TGF-beta can be the product of senescent cells, these were targeted by treatment with senolytic drugs. Treatment of aged mice with senolytics prior to influenza infection restored the differentiation of Th cells in those aged mice to a more youthful phenotype with fewer Th cells expressing FoxP3. In addition, treatment with senolytic drugs induced differentiation of aged Th toward a healing Type 2 phenotype, which promotes a return to homeostasis. These results suggest that senescent cells, via production of cytokines such as TGF-beta, have a significant impact on Th differentiation.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Senescência Celular/imunologia , Senoterapia/uso terapêutico , Animais , Diferenciação Celular , Humanos , Camundongos , Senoterapia/farmacologia
5.
Cell Metab ; 34(1): 75-89.e8, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34813734

RESUMO

Insulin resistance is a pathological state often associated with obesity, representing a major risk factor for type 2 diabetes. Limited mechanism-based strategies exist to alleviate insulin resistance. Here, using single-cell transcriptomics, we identify a small, critically important, but previously unexamined cell population, p21Cip1 highly expressing (p21high) cells, which accumulate in adipose tissue with obesity. By leveraging a p21-Cre mouse model, we demonstrate that intermittent clearance of p21high cells can both prevent and alleviate insulin resistance in obese mice. Exclusive inactivation of the NF-κB pathway within p21high cells, without killing them, attenuates insulin resistance. Moreover, fat transplantation experiments establish that p21high cells within fat are sufficient to cause insulin resistance in vivo. Importantly, a senolytic cocktail, dasatinib plus quercetin, eliminates p21high cells in human fat ex vivo and mitigates insulin resistance following xenotransplantation into immuno-deficient mice. Our findings lay the foundation for pursuing the targeting of p21high cells as a new therapy to alleviate insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Tecido Adiposo/metabolismo , Animais , Senescência Celular/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
6.
Aging Cell ; 20(7): e13394, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101970

RESUMO

Aging is one of the major risk factors for degenerative joint disorders, including those involving the temporomandibular joint (TMJ). TMJ degeneration occurs primarily in the population over 65, significantly increasing the risk of joint discomfort, restricted joint mobility, and reduced quality of life. Unfortunately, there is currently no effective mechanism-based treatment available in the clinic to alleviate TMJ degeneration with aging. We now demonstrate that intermittent administration of senolytics, drugs which can selectively clear senescent cells, preserved mandibular condylar cartilage thickness, improved subchondral bone volume and turnover, and reduced Osteoarthritis Research Society International (OARSI) histopathological score in both 23- to 24-month-old male and female mice. Senolytics had little effect on 4 months old young mice, indicating age-specific benefits. Our study provides proof-of-concept evidence that age-related TMJ degeneration can be alleviated by pharmaceutical intervention targeting cellular senescence. Since the senolytics used in this study have been proven relatively safe in recent human studies, our findings may help justify future clinical trials addressing TMJ degeneration in old age.


Assuntos
Senoterapia/uso terapêutico , Transtornos da Articulação Temporomandibular/tratamento farmacológico , Articulação Temporomandibular/patologia , Envelhecimento , Animais , Humanos , Masculino , Camundongos , Senoterapia/farmacologia
7.
J Gerontol A Biol Sci Med Sci ; 76(7): 1153-1160, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33693872

RESUMO

A geroscience-informed approach to the increasing prevalence of bladder control problems in older adults requires understanding the impact of aging on dynamic mechanisms that ensure resilience in response to stressors challenging asymptomatic voluntary control over urine storage and voiding. Bladder control is predicated on sensory neural information about bladder volume. Modulation of volume-induced bladder wall tensions by autonomic and mucosal factors controls neural sensitivity to bladder volume. We hypothesized that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels integrate these factors and thereby mediate adrenergic detrusor tension control. Furthermore, loss of HCN expression compromises that integration and could result in loss of precision of detrusor control. Using a life-span mouse model, reverse transcription quantitative real-time PCR and pharmacologic studies in pretensioned intact and mucosa-denuded bladder strips were made. The dominant hcn1 expression declines with maturation and aging; however, aging is also associated with increased variance around mean values. In strips from Mature animals, isoproterenol had less effect in denuded muscle strips than in intact strips, and HCN blockade diminished isoproterenol responsiveness. With aging, variances about mean response values significantly increased, paralleling hcn1 expression. Our findings support a role for HCN in providing neuroendocrine/paracrine integration and suggest an association of increased heterogeneity of HCN expression in aging with reductions in response precision to neuroendocrine control. The functional implication is an increased risk of dysfunction of brainstem/bladder regulation of neuronal sensitivity to bladder volume. This supports the clinical model of the aging bladder phenotype as an expression of loss of resilience, and not as emerging bladder pathology with aging.


Assuntos
Envelhecimento/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Bexiga Urinária Hiperativa/metabolismo , Bexiga Urinária/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
10.
Biomaterials ; 196: 90-99, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30075952

RESUMO

Older adults suffer from weakened and delayed bone healing due to age-related alterations in bone cells and in the immune system. Given the interaction between the immune system and skeletal cells, therapies that address deficiencies in both the skeletal and the immune system are required to effectively treat bone injuries of older patients. The sequence of macrophage activation observed in healthy tissue repair involves a transition from a pro-inflammatory state followed by a pro-reparative state. In older patients, inflammation is slower to resolve and impedes healing. The goal of this study was to design a novel drug delivery system for temporal guidance of the polarization of macrophages using bone grafting materials. A biomimetic calcium phosphate coating (bCaP) physically and temporally separated the pro-inflammatory stimulus interferon-gamma (IFNγ) from the pro-reparative stimulus simvastatin (SIMV). Effective doses were identified using a human monocyte line (THP-1) and testing culminated with bone marrow macrophages obtained from old mice. Sequential M1-to-M2 activation was achieved with both cell types. These results suggest that this novel immunomodulatory drug delivery system holds potential for controlling macrophage activation in bones of older patients.


Assuntos
Fosfatos de Cálcio/farmacologia , Senescência Celular , Materiais Revestidos Biocompatíveis/farmacologia , Macrófagos/citologia , Animais , Senescência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/farmacologia , Cinética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sinvastatina/farmacologia , Células THP-1 , Fatores de Tempo
11.
J Gerontol A Biol Sci Med Sci ; 74(3): 325-329, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30124776

RESUMO

The Hyperpolarization activated, cyclic nucleotide gated (HCN) channel is a candidate mediator of neuroendocrine influence over detrusor tonus during filling. In other tissues, HCN loss with aging is linked to declines in rhythmicity and function. We hypothesized that HCN has an age-sensitive expression profile and functional role in adrenergic bladder relaxation. HCN was examined in bladders from young (2-6 months) and old (18-24 months) C57BL/6 female mice, using qRT-PCR, RNAScope, and Western blots. Isometric tension studies were conducted using bladder strips from young wild-type (YWT), old wild-type (OWT), and young HCN1 knock-out (YKO) female mice to test the role HCN in effects of ß-adrenergic stimulation. Hcn1 is the dominant HCN isoform RNA in the mouse bladder wall, and is diminished with age. Location of Hcn RNA within the mouse bladder wall is isoform-specific, with HCN1 limited to the detrusor layer. Passively-tensioned YWT bladder strips are relaxed by isoproterenol in the presence of HCN function, where OWT strips are relaxed only in the presence of HCN blockade. HCN has an age-specific expression and function in adrenergic detrusor relaxation in mouse bladder strips.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Relaxamento Muscular/fisiologia , Tono Muscular/fisiologia , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Feminino , Isoproterenol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Relaxamento Muscular/efeitos dos fármacos , Tono Muscular/efeitos dos fármacos , Técnicas de Cultura de Tecidos
12.
Aging (Albany NY) ; 8(4): 620-35, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26856410

RESUMO

Although the influenza virus only infects the respiratory system, myalgias are commonly experienced during infection. In addition to a greater risk of hospitalization and death, older adults are more likely to develop disability following influenza infection; however, this relationship is understudied. We hypothesized that upon challenge with influenza, aging would be associated with functional impairments, as well as upregulation of skeletal muscle inflammatory and atrophy genes. Infected young and aged mice demonstrated decreased mobility and altered gait kinetics. These declines were more prominent in hind limbs and in aged mice. Skeletal muscle expression of genes involved in inflammation, as well as muscle atrophy and proteolysis, increased during influenza infection with an elevated and prolonged peak in aged mice. Infection also decreased expression of positive regulators of muscle mass and myogenesis components to a greater degree in aged mice. Gene expression correlated to influenza-induced body mass loss, although evidence did not support direct muscle infection. Overall, influenza leads to mobility impairments with induction of inflammatory and muscle degradation genes and downregulation of positive regulators of muscle. These effects are augmented and prolonged with aging, providing a molecular link between influenza infection, decreased resilience and increased risk of disability in the elderly.


Assuntos
Envelhecimento/fisiologia , Inflamação/virologia , Músculo Esquelético/virologia , Mialgia/virologia , Infecções por Orthomyxoviridae/patologia , Fatores Etários , Animais , Marcha/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Vírus da Influenza A , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/virologia , Mialgia/metabolismo , Mialgia/patologia , Infecções por Orthomyxoviridae/metabolismo
13.
J Am Soc Mass Spectrom ; 18(12): 2137-45, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17962038

RESUMO

A series of phosphorylated test peptides was studied by electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry (ECD FT-ICR MS). The extensive ECD-induced fragmentation made identification of phosphorylation sites for these peptides straightforward. The site(s) of initial phosphorylation of a synthetic peptide with a sequence identical to that of the phosphorylation site domain (PSD) of the myristoylated alanine-rich C kinase (MARCKS) protein was then determined. Despite success in analyzing fragmentation of the smaller test peptides, a unique site on the PSD for the first step of phosphorylation could not be identified because the phosphorylation reaction produced a heterogeneous mixture of products. Some molecules were phosphorylated on the serine closest to the N-terminus, and others on one of the two serines closest to the C-terminus of the peptide. Although no definitive evidence for phosphorylation on either of the remaining two serines in the PSD was found, modification there could not be ruled out by the ECD fragmentation data.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Peptídeos/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Peso Molecular , Substrato Quinase C Rico em Alanina Miristoilada , Fosforilação , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
14.
J Biol Chem ; 280(11): 9946-56, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15640140

RESUMO

Myristoylated alanine-rich C kinase substrate (MARCKS) is an unfolded protein that contains well characterized actin-binding sites within the phosphorylation site domain (PSD), yet paradoxically, we now find that intact MARCKS does not bind to actin. Intact MARCKS also does not bind as well to calmodulin as does the PSD alone. Myristoylation at the N terminus alters how calmodulin binds to MARCKS, implying that, despite its unfolded state, the distant N terminus influences binding events at the PSD. We show that the free PSD binds with site specificity to MARCKS, suggesting that long-range intramolecular interactions within MARCKS are also possible. Because of the unusual primary sequence of MARCKS with an overall isoelectric point of 4.2 yet a very basic PSD (overall charge of +13), we speculated that ionic interactions between oppositely charged domains of MARCKS were responsible for long-range interactions within MARCKS that sterically influence binding events at the PSD and that explain the observed differences between properties of the PSD and MARCKS. Consistent with this hypothesis, chemical modifications of MARCKS that neutralize negatively charged residues outside of the PSD allow the PSD to bind to actin and increase the affinity of MARCKS for calmodulin. Similarly, both myristoylation of MARCKS and cleavage of MARCKS by calpain are shown to increase the availability of the PSD so as to activate its actin-binding activity. Because abundant evidence supports the conclusion that MARCKS is an important protein in regulating actin dynamics, our data imply that post-translational modifications of MARCKS are necessary and sufficient to regulate actin-binding activity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Actinas/química , Animais , Anisotropia , Sítios de Ligação , Calmodulina/química , Calpaína/química , Calpaína/farmacologia , DNA/química , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Íons , Camundongos , Músculo Esquelético/metabolismo , Ácidos Mirísticos/metabolismo , Substrato Quinase C Rico em Alanina Miristoilada , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/química , Espectrometria de Fluorescência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA