Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cytokine ; 179: 156629, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38704961

RESUMO

Melanoma is a particularly aggressive type of skin cancer that can spread to distant organs, resulting in poor patient outcomes. C-X-C motif chemokine ligand 12 (CXCL12) interacts to the C-X-C chemokine receptor type 4 (CXCR4). This connection between CXCR4 and its companion ligand CXCL12 is important in melanoma metastasis and progression, encouraging cell proliferation, invasion, and survival via downstream signaling pathways. Furthermore, CXCR4 is implicated in the interaction between melanoma cells and the tumor microenvironment, which promotes malignant cell migration and immune evasion. Given the importance of the CXCR4/CXCL12 axis in melanoma, addressing this axis has the potential to prevent metastasis and improve patient outcomes. We present an overview of the CXCR4/CXCL12 axis in cancer progression and explain its role in the melanoma microenvironment in this paper. Furthermore, we investigate CXCR4's predictive usefulness as a possible biomarker for monitoring melanoma progression. Finally, we discuss the most recent research and clinical trials on CXCR4 inhibitors, emphasizing their efficacy and limits. We hope to improve the quality of life for melanoma patients by better understanding the role of CXCR4 and investigating novel therapeutic options.


Assuntos
Quimiocina CXCL12 , Melanoma , Receptores CXCR4 , Transdução de Sinais , Microambiente Tumoral , Humanos , Receptores CXCR4/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Quimiocina CXCL12/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Animais , Progressão da Doença
2.
Front Pharmacol ; 13: 894535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160379

RESUMO

Despite recent improvements in multiple myeloma (MM) treatment, MM remains an incurable disease and most patients experience a relapse. The major reason for myeloma recurrence is the persistent stem cell-like population. It has been demonstrated that overexpression of Bruton's tyrosine kinase (BTK) in MM stem cell-like cells is correlated with drug resistance and poor prognosis. We have developed a novel small BTK inhibitor, KS151, which is unique compared to other BTK inhibitors. Unlike ibrutinib, and the other BTK inhibitors such as acalabrutinib, orelabrutinib, and zanubrutinib that covalently bind to the C481 residue in the BTK kinase domain, KS151 can inhibit BTK activities without binding to C481. This feature of KS151 is important because C481 becomes mutated in many patients and causes drug resistance. We demonstrated that KS151 inhibits in vitro BTK kinase activities and is more potent than ibrutinib. Furthermore, by performing a semi-quantitative, sandwich-based array for 71-tyrosine kinase phosphorylation, we found that KS151 specifically inhibits BTK. Our western blotting data showed that KS151 inhibits BTK signaling pathways and is effective against bortezomib-resistant cells as well as MM stem cell-like cells. Moreover, KS151 potentiates the apoptotic response of bortezomib, lenalidomide, and panobinostat in both MM and stem cell-like cells. Interestingly, KS151 inhibits stemness markers and is efficient in inhibiting Nanog and Gli1 stemness markers even when MM cells were co-cultured with bone marrow stromal cells (BMSCs). Overall, our results show that we have developed a novel BTK inhibitor effective against the stem cell-like population, and potentiates the response of chemotherapeutic agents.

3.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614089

RESUMO

Over the past two decades, the natural history of multiple myeloma (MM) has evolved dramatically, owing primarily to novel agents targeting MM in the bone marrow microenvironment (BMM) pathways. However, the mechanisms of resistance acquisition remain a mystery and are poorly understood. Autophagy and apoptosis are tightly controlled processes and play a critical role in the cell growth, development, and survival of MM. Genetic instability and abnormalities are two hallmarks of MM. During MM progression, plasma malignant cells become genetically unstable and activate various signaling pathways, resulting in the overexpression of abnormal proteins that disrupt autophagy and apoptosis biological processes. Thus, achieving a better understanding of the autophagy and apoptosis processes and the proteins that crosslinked both pathways, could provide new insights for the MM treatment and improve the development of novel therapeutic strategies to overcome resistance. This review presents a sufficient overview of the roles of autophagy and apoptosis and how they crosslink and control MM progression and drug resistance. Potential combination targeting of both pathways for improving outcomes in MM patients also has been addressed.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Medula Óssea/metabolismo , Resistencia a Medicamentos Antineoplásicos , Apoptose , Autofagia , Microambiente Tumoral
4.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071917

RESUMO

Multiple myeloma (MM), a clonal plasma cell disorder, disrupts the bones' hematopoiesis and microenvironment homeostasis and ability to mediate an immune response against malignant clones. Despite prominent survival improvement with newer treatment modalities since the 2000s, MM is still considered a non-curable disease. Patients experience disease recurrence episodes with clonal evolution, and with each relapse disease comes back with a more aggressive phenotype. Bruton's Tyrosine Kinase (BTK) has been a major target for B cell clonal disorders and its role in clonal plasma cell disorders is under active investigation. BTK is a cytosolic kinase which plays a major role in the immune system and its related malignancies. The BTK pathway has been shown to provide survival for malignant clone and multiple myeloma stem cells (MMSCs). BTK also regulates the malignant clones' interaction with the bone marrow microenvironment. Hence, BTK inhibition is a promising therapeutic strategy for MM patients. In this review, the role of BTK and its signal transduction pathways are outlined in the context of MM.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Terapia de Alvo Molecular , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/química , Tirosina Quinase da Agamaglobulinemia/metabolismo , Biomarcadores Tumorais , Medula Óssea/metabolismo , Medula Óssea/patologia , Gerenciamento Clínico , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos , Humanos , Terapia de Alvo Molecular/métodos , Mieloma Múltiplo/etiologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA