Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11328, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760400

RESUMO

A novel hyper cross-linked polymer of 2-Aminobenzoic acid (HCP-AA) is synthesized for the adsorption of Cr3+ and CO2. The Brunauer-Emmett-Teller surface area of HCP-AA is 615 m2 g-1. HCP-AA of particle size 0.5 nm showed maximum adsorption of Cr3+ for lab prepared wastewater (93%) while it was 88% for real industrial wastewater. It is might be due to electrostatic interactions, cation-π interactions, lone pair interactions and cation exchange at pH 7; contact time of 8 min; adsorbent dose 0.8 g. The adsorption capacity was calculated 52.63 mg g-1 for chromium metal ions at optimum conditions. Freundlich isotherm studies R2 = 0.9273 value is the best fit and follows pseudo second order kinetic model (R2 = 0.979). The adsorption is found non-spontaneous and exothermic through thermodynamic calculations like Gibbs free energy (ΔG), enthalpy change (ΔH) and entropy change (ΔS) were 6.58 kJ mol-1, - 60.91 kJ mol-1 and - 45.79 kJ mol-1 K-1, respectively. The CO2 adsorption capacity of HCP-AA is 1.39 mmol/g with quantity of 31.1 cm3/g (6.1 wt%) at 273Kwhile at 298 K adsorption capacity is 1.12 mmol/g with quantity 25.2 cm3/g (5 wt%). Overall, study suggests that carboxyl (-COOH) and amino (-NH2) groups may be actively enhancing the adsorption capacity of HCP-AA for Cr3+ and CO2.

2.
Food Chem ; 450: 139152, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38653046

RESUMO

The development of a robust electrocatalyst for the electrochemical sensor for hazardous pesticides will reduce its effects on the ecosystem. Herein, we synthesized the robust manganese cobalt phosphide (MnCoP) - Core-shell as an electrochemical sensor for the determination of hazardous pesticide methyl parathion (MP). The MnCoP- Core-shell was prepared with the sustainable self-template route can help with the larger surface area. The Core-shell structure of MnCoP possesses a higher active surface area which increases the electrocatalytic performance and is utilized to improve the electrochemical MP reduction with the synergism of the core and shell structure. Remarkably, it realizes the higher sensitivity (0.014 µA µM-1 cm-2) of MnCoP- Core-shell/GCE achieves towards MP with lower limit of detection (LoD 50 nM) and exceptional recovery rate of MP in vegetable samples are achieved with the differential pulse voltammetry (DPV) technique. The MnCoP- Core-shell electrode reserved their superior electrochemical performances with high reproducibility and repeatability. This prominent activity of the MnCoP core-shell towards the MP in real sample analysis, makes it a promising electrochemical sensor for the detection of MP.


Assuntos
Cobalto , Técnicas Eletroquímicas , Contaminação de Alimentos , Manganês , Metil Paration , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Cobalto/química , Cobalto/análise , Metil Paration/análise , Contaminação de Alimentos/análise , Manganês/química , Manganês/análise , Limite de Detecção , Fosfinas/química , Fosfinas/análise , Verduras/química , Eletrodos , Praguicidas/análise , Praguicidas/química
3.
Environ Monit Assess ; 196(5): 480, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676764

RESUMO

The objective of the current research was to examine the water quality of the River Ravi and the River Sutlej, with a specific focus on potentially toxic elements (PTEs). Additionally, we sought to monitor the sources of pollution in these rivers by gathering samples from the primary drains that carry industrial and municipal waste into these water bodies. Furthermore, we aimed to evaluate the impact of PTEs in surface water on groundwater quality by collecting groundwater samples from nearby populated areas. A total of 30 samples were collected from these three sources: rivers (6 samples), drains (9 samples), and groundwater (15 samples). The analysis revealed that the levels of PTEs in the samples from these three resources having a mean value: arsenic (As) 23.5 µg/L, zinc (Zn) 2.35 mg/L, manganese (Mn) 0.51 mg/L, lead (Pb) 6.63 µg/L, and chromium (Cr) 10.9 µg/L, exceeded the recommended values set by the World Health Organization (WHO). Furthermore, PTEs including (As 84%), (Zn 65%), (Mn 69%), (Pb 53%), (Cr 53%), and (Ni 27%), samples were beyond the recommended values of WHO. The results of the Principal Component Analysis indicated that surface water and groundwater exhibited total variability of 83.87% and 85.97%, respectively. This indicates that the aquifers in the study area have been contaminated due to both natural geogenic factors and anthropogenic sources. These sources include the discharge of industrial effluents, wastewater from municipal sources, mining activities, agricultural practices, weathering of rocks, and interactions between rocks and water. Spatial distribution maps clearly illustrated the widespread mobilization of PTEs throughout the study area. Furthermore, a health risk assessment was conducted to evaluate the potential adverse health effects of PTEs through the ingestion of drinking groundwater by both children and adults. Health risk assessment result show the mean carcinogenic values for As, Cr, Pb and Ni in children are calculated to be (1.88E-04), (2.61E-04), (2.16E-02), and (5.74E-05), respectively. Similarly, the mean carcinogenic values for the above mentioned PTEs in adults were recorded to be (2.39E-05), (3.32E-05), (1.19E-03), and (7.29E-06) respectively. The total hazard index values for As, Zn, Cr, Pb, Mn, Cu, and Ni in children were observed to be (9.07E + 00), (9.95E-07), (4.59E-04), (5.75E-04), (4.72E-05), (2.78E-03), and (5.27E-05) respectively. The analysis revealed that As has an adverse effect on the population of the study area as compared to other PTEs investigated in this study.


Assuntos
Arsênio , Monitoramento Ambiental , Água Subterrânea , Rios , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , Rios/química , Arsênio/análise , Medição de Risco , Humanos , Metais Pesados/análise
4.
BMC Chem ; 18(1): 53, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493163

RESUMO

This study encompasses a quick, efficient, repeatable and reproducible analytical method for simultaneous determination of Bromoxynil (3, 5-Dibromo-4-hydroxybenzonitrile) and MCPA (2-methyl-4-chlorophenoxyacetic acid) using RP-HPLC with UV-Detector. Bromoxynil + MCPA is one of the most selective post emergent herbicide formulations for the control of important broad leaf weeds infesting small grains (wheat, barley, oats, rye), conservation reserve program areas and grass grown for seed. Optimum weed control is achieved when Bromoxynil + MCPA is applied to actively growing weed seedlings. So, a simple, repeatable, reproducible and efficient simultaneous analytical method was developed for Bromoxynil + MCPA. The developed method was applied for the detection and quantitation of these pesticides in formulations and raw materials with excellent recoveries. It was validated according to ICH Guidelines with excellent linearity R2 = 0.992 for Bromoxynil and 0.998 for MCPA. For Bromoxynil, LOD = 1.57 mg/L and LOQ = 5.22 mg/L while for MCPA the LOD = 1.08 mg/L and LOQ = 3.62 mg/L was found. The proposed method has shown high precision (RSD %) 0.06% and 0.11% for Bromoxynil and MCPA respectively while the trueness has been calculated in terms of recovery percentage obtained as "mean value of Bromoxynil 99.53% and MCPA 100.10%" which is excellent under optimized conditions. For repeatability and reproducibility, five replicate readings of standard and sample were taken and had found within acceptable limits of relative standard deviation (RSD ≤ ± 2%). Finally, the robustness of the developed method was determined by changing flow rate and mobile phase ratios that has found within the permissible limits (% RSD NMT 1.5). So, the proposed analytical method has found to be more precise, valid and accurate at commercial scale.

5.
J Fluoresc ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441710

RESUMO

A newly developed diindolium moiety has been synthesized and structurally investigated by employing a number of spectroscopic methods like NMR and HRMS in order to serve as a cyanide sensor DI. The interaction between DI and the CN- ion causes a noticeable color shift from pink to colorless, making it easy to detect CN- ions with the naked eye. Besides, the sensor exhibited fluorescence color change from orange to light blue under UV lamp. Sensor DI has remarkable selectivity and sensitivity in distinguishing between CN- and a wide range of interfering anions. The sensing mechanism of sensor DI towards CN- ion involves the nucleophilic addition process of CN- to the electron deficient indolium moiety. The detection limit of cyanide ion by sensor DI is calculated to be 1.4 × 10- 7 M by UV-visible and 8.2 × 10- 8 M by fluorescence technique which are lower than the limit set by WHO. The application of sensor DI for cyanide ion is utilized by making test kit and by taking different sources of water to test the presence of cyanide ion.

6.
Soft Matter ; 20(6): 1210-1223, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38229512

RESUMO

The current research described in this paper, focuses on the development of a new quinoline-based Mannich-type benzoxazine and its use to obtain advanced carbonisation materials with a high energy storage capacity. Based on this, a quinoline-based benzoxazine monomer (Q-xda) was synthesised by a reaction between 8-hydroxyquinoline, xylylenediamine and paraformaldehyde, and it is characterised by FT-IR and 1H-NMR spectroscopy. Composites were prepared from the benzoxazine and variable weight percentages of graphitic carbon nitride (GCN) (i.e., 5, 10, and 15 wt%). The oxazine ring-opening curing process of the polybenzoxazine composites, and its subsequent pyrolysis reaction was performed; and their chemical structures were confirmed using FT-IR spectroscopy. Also, the thermal and morphological characteristics of the composites were evaluated by XRD, thermogravimetric analysis (TGA), and SEM analyses. According to the results of the thermal experiments, adding GCN reinforcement significantly increased the thermal stability and char yield of the resultant composites. Electrochemical, and hydrophobic investigations were also carried out, and the results of these suggesting that the composites reinforced with 15 wt% GCN exhibit the highest dielectric constant (high κ = 10.2) and contact angle (145°). However, all the crosslinked composites demonstrated a remarkable electrochemical performance as pseudocapacitors. The resulting poly(Q-xda) + 15 wt% GCN electrodes showed a higher capacitance and a lower transferred charge resistance (i.e., 370 F g-1 at 6 A g-1 and 20.8 Ω) than the poly(Q-xda) electrode (i.e., 216 F g-1 at 6 A g-1 and 26.0 Ω). In addition, the poly(Q-xda) + 15% GCN exhibited a cycling efficiency of 96.2% even after 2000 cycles. From these results, it can be concluded that the constructed electrodes perform well in electrochemical operations.

7.
PLoS One ; 18(10): e0286341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37906583

RESUMO

The current study describes the biogenic synthesis of two metal oxides zinc oxide (ZnO), aluminum oxide (Al2O3) nanoparticles using Camellia sinensis, and Origanum vulgare L. leaves extract, respectively. The synthesized metal oxide nanoparticles were investigated using spectroscopic and microscopic techniques to confirm the formation of their nanostructures. Accurate and precise spectrofluorometric probes were proposed for the quantification of Ofloxacin (OFX) and Ciprofloxacin (CPFX) in their bulk and commercial formulations. The extraordinary properties of Zinc oxide and aluminum oxide nanoparticles (ZnONPs and Al2O3NPs) enhance the fluorescence intensity in the presence of 0.5 mL and 1.0 mL of sodium dodecyl sulfate (SDS, 1.0% w/v) as organizing agent for the detection of OFX and CPFX, respectively. The optical detection of both drugs at λex/em range 250-700 nm displayed linearity with a main correlation coefficient >0.999 at 1-300 (OFX-SDS-ZnONPs) and 0.5-100 (OFX-SDS-Al2O3NPs) ng mL-1,10-400 (CPFX-SDS-ZnONPs) and 0.1-50 (CPFX-SDS-Al2O3NPs) ng mL-1. The detection and quantification limits were found to be 0.04, 0.03, and 0.02, 0.04 ng mL-1, 0.13, 0.10, and 7.24, 0.09 ng mL-1 for the above-mentioned fluorescence systems, respectively. The suggested spectrofluorometric probes were validated and potentially applied for the estimation of OFX and CPFX in their bulk and commercial formulations.


Assuntos
Camellia sinensis , Nanopartículas Metálicas , Nanopartículas , Origanum , Óxido de Zinco , Ofloxacino , Óxido de Zinco/química , Ciprofloxacina , Nanopartículas/química , Óxidos , Óxido de Alumínio
8.
Polymers (Basel) ; 15(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37571052

RESUMO

The potential of using laser-induced breakdown spectroscopy (LIBS) in combination with various other spectroscopic and statistical methods was assessed for characterizing pure and MgO-doped nylon (6/6) organic polymer samples. The pure samples, obtained through a polycondensation chemical technique, were artificially doped with MgO prior to analysis for comparative purposes. These artificially doped samples served as crucial reference materials for comparative analysis and reference purposes. The LIBS studies were performed under local thermodynamic equilibrium (LTE) and optically thin plasma conditions. To assess the structural crystallinity of the nylon (6/6) polymer samples, X-ray diffraction (XRD) analysis, and Fourier transform infrared (FTIR) spectroscopy were employed to detect functional groups such as N-H, C-H, and C-N in the adsorbent polyamide nylon sample. Additionally, diffuse reflectance spectroscopy (DRS) analysis was conducted to investigate the effects of doping and temperature on the band gap and material reflectance across different sample temperatures. Chemical compositional analysis was performed using X-ray photoelectron spectroscopy (XPS) with the carbon C1s peak at 248.8 eV serving as a reference for spectrum calibration, along with energy-dispersive X-ray (EDX) analysis, which demonstrated good agreement between the techniques. To validate the different methodologies, the results obtained from CF-LIBS and EDX were compared with those from the standard inductively coupled plasma mass spectrometry (ICP-MS) technique. Finally, for classification analysis, principal component analysis (PCA) was applied to the LIBS spectral data at different sample temperatures (25 °C, 125 °C, 225 °C, and 325 °C). The analyses demonstrated that the combination of LIBS with PCA, along with other methods, presents a robust technique for polymer characterization.

9.
Micromachines (Basel) ; 14(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37512596

RESUMO

The current study attempts to evaluate the formation, morphology, and physico-chemical properties of zinc oxide nanoparticles (ZnO NPs) synthesized from Clinopodium vulgare extract at different pH values and to investigate their antimicrobial and biomedical application potential. The reduction of zinc ions to ZnO NPs was determined by UV spectra, which revealed absorption peaks at 390 nm at pH 5 and 348 nm at pH 9, respectively. The spherical morphology of the nanoparticles was observed using scanning electron microscopy (SEM), and the size was 47 nm for pH 5 and 45 nm for pH 9. Fourier-transformed infrared spectroscopy (FTIR) was used to reveal the presence of functional groups on the surface of nanoparticles. The antibacterial activity was examined against Staphylococcus aureus, Streptococcus pyogenes, and Klebsiella pneumonia via the agar-well diffusion method. Comparatively, the highest activities were recorded at pH 9 against all bacterial strains, and among these, biogenic ZnO NPs displayed the maximum inhibition zone (i.e., 20.88 ± 0.79 mm) against S. aureus. ZnO NPs prepared at pH 9 exhibited the highest antifungal activity of 80% at 25 mg/mL and antileishmanial activity of 82% at 400 mg/mL. Altogether, ZnO NPs synthesized at pH 9 show promising antimicrobial potential and could be used for biomedical applications.

10.
Micromachines (Basel) ; 14(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37241552

RESUMO

The biosynthesis of algal-based zinc oxide (ZnO) nanoparticles has shown several advantages over traditional physico-chemical methods, such as lower cost, less toxicity, and greater sustainability. In the current study, bioactive molecules present in Spirogyra hyalina extract were exploited for the biofabrication and capping of ZnO NPs, using zinc acetate dihydrate and zinc nitrate hexahydrate as precursors. The newly biosynthesized ZnO NPs were characterized for structural and optical changes through UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). A color change in the reaction mixture from light yellow to white indicated the successful biofabrication of ZnO NPs. The UV-Vis absorption spectrum peaks at 358 nm (from zinc acetate) and 363 nm (from zinc nitrate) of ZnO NPs confirmed that optical changes were caused by a blue shift near the band edges. The extremely crystalline and hexagonal Wurtzite structure of ZnO NPs was confirmed by XRD. The involvement of bioactive metabolites from algae in the bioreduction and capping of NPs was demonstrated by FTIR investigation. The SEM results revealed spherical-shaped ZnO NPs. In addition to this, the antibacterial and antioxidant activity of the ZnO NPs was investigated. ZnO NPs showed remarkable antibacterial efficacy against both Gram-positive and Gram-negative bacteria. The DPPH test revealed the strong antioxidant activity of ZnO NPs.

11.
Chemosphere ; 318: 137948, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36716937

RESUMO

This study demonstrates a hydrothermal method to prepare perovskite-type potassium niobate (KNbO3) through deep eutectic solvent (DES), which is further used as an electrode material for the determination of bisphenol A (BPA). The as-synthesized KNbO3 was systematically characterized by different microscopic and spectroscopic techniques. The KNbO3-modified electrode demonstrates excellent electrocatalytic activity for BPA compared to the pristine electrode. The enhanced performance of the proposed sensor is attributed to the numerous active sites, large electrochemical surface area, high electrical conductivity, and rapid electron transfer. The fabricated sensor shows a wide detection range (0.01-84.3 µM), a low limit of detection (0.003 µM), a high sensitivity (0.51 µA µM-1 cm-2), and good anti-interference abilities towards the BPA detection by linear sweep voltammetry method. Besides, it was successfully applied to determining BPA in food samples, demonstrating good practicability. This design paves a new way to fabricate efficient electrode material for various electrochemical applications using a DES medium.


Assuntos
Solventes Eutéticos Profundos , Técnicas Eletroquímicas , Eletrodos , Técnicas Eletroquímicas/métodos
12.
Food Chem ; 404(Pt A): 134516, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240561

RESUMO

2,4,6-Trichlorophenol (TCP) is the most widely used pesticide in the world and has a devastating effect on the environment and human health. As a result of the use of pyrochlore type La2Sn2O7 hexagonal nanosheet (La2Sn2O7 HNS) modified electrode, this work reports on the quick and sensitive electrochemical detection of TCP. The La2Sn2O7 HNS is reported here for the first time and has been made using a simple precipitation and calcination technique. The crystal structure and surface morphologies of La2Sn2O7 HNS have been characterized using XRD, XPS, HR-TEM, and FE-SEM analyses. Detection limits of 0.074 µM and sensitivity of 1.5 µA µM-1 cm-2 were achieved using the La2Sn2O7 HNS for TCP detection. It also showed decent selectivity among the common interfering molecules. Additionally, the La2Sn2O7 HNS/GCE sensor was able to detect TCP in water and vegetable samples with >90 % recovery, proving its appropriateness for quick TCP detection.


Assuntos
Clorofenóis , Praguicidas , Humanos , Lantânio/química , Técnicas Eletroquímicas/métodos , Eletrodos
13.
Chemosphere ; 308(Pt 2): 136408, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36103922

RESUMO

Ciprofloxacin antibiotic (CIP) is one of the antibiotics with the highest rate of antibiotic resistance, if used and managed improperly, can have a negative impact on the ecosystem. In this research, ZnO modified g-C3N4 photocatalyst was prepared and applied for the decomposition of CIP antibiotic compounds in water. The removal performance of CIP by using ZnO/g-C3N4 reached 93.8% under pH 8.0 and an increasing amount of catalyst could improve the degradation performance of the pollutant. The modified ZnO/g-C3N4 completely oxidized CIP at a low concentration of 1 mg L-1 and the CIP removal efficiency slightly decreases (around 13%) at a high level of pollutant (20 mg L-1). The degradation rate of CIP by doped sample ZnO/g-C3N4 was 4.9 times faster than that of undoped g-C3N4. The doped catalyst ZnO/g-C3N4 also displayed high reusability for decomposition of CIP with 89.8% efficiency remaining after 3 cycles. The radical species including ·OH, ·O2- and h+ are important in the CIP degradation process. In addition, the proposed mechanism for CIP degradation by visible light-assisted ZnO/g-C3N4 was claimed.


Assuntos
Poluentes Ambientais , Óxido de Zinco , Antibacterianos/química , Catálise , Ciprofloxacina/química , Ecossistema , Luz , Fotólise , Água
14.
Food Chem ; 397: 133791, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917784

RESUMO

Herein we report the ternary hybrid nanocomposite of iron oxide @ molybdenum carbide micro flowers decorated graphitic-carbon nitride (Fe3O4@MoC MFs/g-CN), as a catalyst for the detection of organophosphorus pesticide, parathion (PAT), for the first time. The growth of hierarchical nanostructure from the core level will facilitate easy diffusion of analyte and interact more effectively with the reactive catalytic sites. Thus, Fe3O4 NFs architecture was hydrothermally grown over MoC flakes from the core level, which further hybridized with g-CN to ensure electrical conductivity and mechanical stability. Experimental results demonstrate that Fe3O4@MoC MFs/g-CN/GCE has superior catalytic efficacy for PAT reduction. At optimum conditions, the proposed sensor exhibits a low detection limit (7.8 nM), high sensitivity, and wide linear range (0.5-600 µM) toward PAT detection. The satisfactory test results of the food samples indicate that the Fe3O4@MoC MFs/g-CN/GCE sensor can be used as an excellent candidate for real-time PAT detection.


Assuntos
Inseticidas , Nanocompostos , Praguicidas , Técnicas Eletroquímicas/métodos , Compostos Férricos/química , Flores/química , Grafite , Inseticidas/análise , Molibdênio , Nanocompostos/química , Compostos de Nitrogênio , Organofosfatos , Compostos Organofosforados
15.
Chemosphere ; 305: 135333, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35709834

RESUMO

In this work, we reported synthesis of cobalt and carbon codoped TiO2 (Co-C-TiO2) nanoparticles were prepared using co-precipitation technique. The synthesized catalysts are analyzed by various methods. The powder XRD pattern confirmed that all the samples were polycrystalline of anatase phase and particle size of resultant nanoparticle was reduced correlated with bare TiO2 sample. FTIR measurements exhibit the identification of functional groups present at the surface of TiO2. FESEM micrograph showed that the shape of codoped TiO2 nanoparticles are approximately sphere. The attained energy gap of Co doped and C codoping of TiO2 modifies to a level below the energy gap of TiO2 anatase specifying a high capability to absorb visible light. The recombination rate of photo-induced electrons and holes for Co-C codoped TiO2 nanoparticles is significantly reduced. The synthesized samples are assessed in degradation of phenol by the illumination of visible light. The results confirmed that photocatalytic activity enhanced due to doping and codoping of Co and C. As a result, Co-C codoped TiO2 nanoparticles exhibited a higher visible-light photocatalytic activity in compared with Co-TiO2 and bare TiO2 with the maximum degradation efficiency of 98, 75 and 15%, respectively. And also, the reusability of the catalyst was proved when 95% degradation could be achieved after consecutive batches. It is predictable that this work will provide new insights to increase the visible light active photocatalysts for environmental problems.

16.
Chemosphere ; 293: 133646, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35063549

RESUMO

Sn-doped MnO2 were synthesized as an oxidant, a mediator of maleic acid (C4H4O4) and SnCl2 as doping ingredient via a basic sol-gel reaction with KMnO4. XRD study signposts that tetragonal crystal structure of MnO2 (ICDD#44-0141) with a plane group of 12/m (87) for both pure and Sn doped MnO2 nanostructures. The photocatalyst synthesized has mesoporosity, allowing to the N2 adsorption/desorption experiments. The geometry of the materials varies from spherical shape in pristine MnO2 to a rod-like shape in Sn-MnO2, as observed in the SEM and TEM pictures. To examine optic properties and energy bandgaps topologies, UV-visible diffuse reflectance spectroscopy was applied. In visible spectrum, overall catalytic performance of Sn-doped MnO2 was tested using methyl orange and phenol as dyes. The results suggest that the optimized Sn doped MnO2 (10 wt.%) catalyst showed higher degradation efficiency (98.5%), apparent constant (0.7841 min-1) and long term permanence. For this improved charge extraction efficiency, a potential photocatalytic mechanism was proposed.


Assuntos
Nanoestruturas , Purificação da Água , Catálise , Luz , Compostos de Manganês , Nanoestruturas/química , Óxidos , Reprodutibilidade dos Testes
17.
Environ Res ; 203: 111842, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363804

RESUMO

Nickel oxide (NiO) nanoparticles (NPs) and graphene quantum dots (GQDs) reinforced polyvinyl alcohol (PVA) nanocomposite films were prepared using a solution casting technique. The physicochemical characteristics of PVA/NiO/GQDs (PNG) nanocomposite films were studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM). The obtained PNG nanocomposite films showed good mechanical flexibility and improved tensile strength. The influence of nanofiller concentrations on PNG nanocomposite film. The obtained results demonstrate an increase in the activation energy (Ea) up to PNG3 upon increasing the GQDs concentration and thereafter, its decreases. The fundamental interactions of the constituents of PNG nanocomposite film were investigated using density functional theory (DFT). This study on electronic structure reveals that the PVA model indirectly interacts with GQDs through the NiO model. This configuration is favoured in terms of interaction energy (-78 kJ/mol) compared to the one in which PVA interacts directly with the GQDs model.


Assuntos
Grafite , Nanocompostos , Nanopartículas , Pontos Quânticos , Níquel , Álcool de Polivinil , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120258, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34384994

RESUMO

In this study, a facile nanoparticle catalytic sensor for resonance Rayleigh scattering quantification of mercury (II) ion was developed. The developed approach is relied on the selective inhibition of the peroxidase-like activity of polyvinylpyrrolidone-stabilized silver nanoparticles (PVP-Ag-NPs) by mercury (II) ions. The synthesized PVP-Ag-NPs oxidize the aqueous solution of O-Phenylenediamine (colorless) to 2,3-phenazinediamine (bright yellow) and their resonance Rayleigh scattering (RRS) activity was completely suppressed. When mercury (II) was introduced, the RRS activity of PVP-Ag-NPs was turned on combined with a reduction of the intensity of the yellow color. The enhancement in the RRS intensity was related to the concentration of mercury (II) in the linear range of 10-2000 nM. The smaller size (4.5 nm), the large surface area and the uniform size (PDI = 0.379) of the synthesized PVP-Ag-NPs offered a higher chance for interaction between mercury (II) and PVP-Ag-NPs with the advantages of high sensitivity (LOD = 4 nM) and excellent selectivity for mercury (II) detection over several metals and anions.


Assuntos
Mercúrio , Nanopartículas Metálicas , Fenilenodiaminas , Prata , Água
19.
Environ Res ; 201: 111588, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34175289

RESUMO

In this study, magnetic sporopollenin supported cyanocalixarene (MSP-CyCalix) nanocomposite was synthesized and introduced as an adsorbent material for the removal of pesticides from aqueous media. MSP-CyCalix was characterized by different analytical techniques FTIR, SEM, EDX, BET, VSMand TEM. Chlorpyrifos and hexaconazole pesticides were chosen as model analytes solutions for testing the adsorption efficiency of MSP-CyCalix adsorbent. The adsorption results showed that the incorporated cyano functional groups significantly increased the chemical reactivity and adsorption capacity for pesticides. To obtain the highest possible performance, experimental parameters such as pH, salt, dosage and time were optimized. Adsorption kinetics and isotherms models showed that pesticide adsorption process was well fitted with the pseudo-second-order and Langmuir models with a maximum adsorption capacity of 13.88 mg g-1 and 12.34 mg g-1 and a removal efficiency of >90% for both pesticides. Lastly, MSP-CyCalix maintained a removal efficiency of >80% for ten cycles and 60% after the eleventh cycles of usage. The results proved that MSP-CyCalix nanocomposite can be used as an efficient adsorbent for the removal of pesticide residues from water.


Assuntos
Praguicidas , Biopolímeros , Carotenoides , Cinética , Fenômenos Magnéticos , Água
20.
Mikrochim Acta ; 188(3): 72, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33550432

RESUMO

The low-temperature synthesis of the graphene oxide-wrapped perovskite-type strontium titanate nanocomposites (GO@SrTiO3-NC) is reported for the electrochemical sensing of organochlorine pesticide 2,4,6-trichlorophenol (TCP) detection. The as-prepared GO@SrTiO3 nanocomposites provide a large surface area, excellent conductivity, and active sites, which are more favorable to the catalysis of TCP. The synergistic effect between the GO and the perovskite SrTiO3 results in the extended working range of 0.01 to 1.47 and 1.47 to 434.4 µM with a very low detection limit of 3.21 nM towards TCP detection. Moreover, the prepared sensor possessed good selectivity and long-term stability. Finally, the practical applicability of the sensor was tested in environmental samples of river water and soil, exhibiting adequate recovery values.


Assuntos
Clorofenóis/análise , Nanocompostos/química , Praguicidas/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Temperatura Baixa , Técnicas Eletroquímicas , Grafite/química , Química Verde , Limite de Detecção , Óxidos/química , Rios/química , Estrôncio/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA