Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Crit Rev Anal Chem ; : 1-20, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655923

RESUMO

In recent decades, heavy metal ions have emerged as a significant global environmental concern, posing threats to the delicate balance of ecosystems worldwide. Their introduction into ecosystems occurs through various activities and poses a serious risk to human health. Among heavy metal ions, Cd2+ is recognized as a highly toxic pollutant. Its widespread use contributes to its accumulation in the environment. Chronic exposure to Cd2+ ions present serious risks to both the environment and human health. Therefore, the detection of these metal ions are very important. Organic fluorometric and colorimetric detection have emerged as promising tools for this purpose, offering advantages such as high sensitivity, selectivity, and sometimes reversibility. This review offers a comprehensive overview of the recent advancements in the fluorometric and colorimetric detection of Cd2+ using organic chemosensors from 2019 to 2024. We delve into key aspects of these studies, including the design strategies employed to design novel chemosensors and the underlying sensing mechanisms. Furthermore, we explore the diverse applications of these organic chemosensors, ranging from environmental monitoring to biomedical diagnostics. By analyzing the latest research findings, this review aims to offer insights into the current state-of-the-art in the field of Cd2+ detection using organic chemosensors. Additionally, it highlights the potential opportunities and challenges that lie ahead, paving the way for future advancements in this important area of research.

2.
J Fluoresc ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015296

RESUMO

In this study, we have synthesized a novel Schiff base-centered chemosensor, designated as SB, with the chemical name ((E)-1-(((6-methylbenzo[d]thiazol-2-yl) imino)methyl)naphthalen-2-ol). This chemosensor was structurally characterized by FT-IR, 1H NMR, UV-Vis and fluorescence spectroscopy. After structural characterization the chemosensor SB was subsequently employed for the detection of Cu2+ and Ag+, using fluorescence spectroscopy. The chemosensor SB showed excellent ability to recognize the target metal ions, leading to fluorescence enhancement and color change from yellow to yellowish orange for Cu2+ and yellow to radish for Ag+ ions. The detection capabilities of this chemosensor were impressive, showing excellent selectivity and an exceptionally low detection limit of 0.0016 µM for Cu2+ and 0.00389 µM for Ag+. Most notably, our approach enables the quantitative detection both metal ions in different water and soil samples at trace level. This achievement holds great promise for analytical applications and offers significant contributions to the field of chemical sensing and environmental protection.

3.
PLoS One ; 18(11): e0287322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37992124

RESUMO

In this study, zinc-oxide (ZnO) nanoparticles (NPs) doped with cobalt (Co) were synthesized using a simple coprecipitation technique. The concentration of Co was varied to investigate its effect on the structural, morphological, optical, and dielectric properties of the NPs. X-ray diffraction (XRD) analysis confirmed the hexagonal wurtzite structure of both undoped and Co-doped ZnO-NPs. Scanning electron microscopy (SEM) was used to examine the morphology of the synthesized NPs, while energy-dispersive X-ray spectroscopy (EDX) was used to verify their purity. The band gap of the NPs was evaluated using UV-visible spectroscopy, which revealed a decrease in the energy gap as the concentration of Co2+ increased in the ZnO matrix. The dielectric constants and AC conductivity of the NPs were measured using an LCR meter. The dielectric constant of the Co-doped ZnO-NPs continuously increased from 4.0 × 10-9 to 2.25 × 10-8, while the dielectric loss decreased from 4.0 × 10-8 to 1.7 × 10-7 as the Co content increased from 0.01 to 0.07%. The a.c. conductivity also increased with increasing applied frequency. The findings suggest that the synthesized Co-doped ZnO-NPs possess enhanced dielectric properties and reduced energy gap, making them promising candidates for low-frequency devices such as UV photodetectors, optoelectronics, and spintronics applications. The use of a cost-effective and scalable synthesis method, coupled with detailed material characterization, makes this work significant in the field of nanomaterials and device engineering.


Assuntos
Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Nanopartículas/química , Óxidos , Cobalto/química , Difração de Raios X
4.
Environ Monit Assess ; 195(6): 633, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37131087

RESUMO

We designed and synthesized a fluorescent "turn-on" and colorimetric chemosensor ((E)-1-((p-tolylimino)methyl)naphthalen-2-ol) SB. The structure of the synthesized chemosensor was investigated by 1H NMR, FT-IR, and fluorescence spectroscopy, and its sensing properties were studied toward Mn2+, Cu2+, Pb2+, Cd2+, Na+, Ni2+, Al3+, K+, Ag+, Zn2+, Co2+, Cr3+, Hg2+, Ca2+, and Mg2+. SB showed an excellent colorimetric (yellow to yellowish brown) in MeOH and fluorescence "turn-on" sensing response to Cu2+ in MeOH/Water (10/90, v/v) media. The sensing mechanism of SB toward Cu2+ was investigated by FT-IR, 1H NMR titration, DFT studies, and Job's plot analysis. The detection limit was calculated to be very low 0.0025 µg mL-1 (0.0025 ppm). Furthermore, the test strip containing SB also showed excellent selectivity and sensitivity toward Cu2+ in a solution medium and when supported on a solid medium.


Assuntos
Colorimetria , Bases de Schiff , Espectroscopia de Infravermelho com Transformada de Fourier , Monitoramento Ambiental , Corantes
5.
Crit Rev Anal Chem ; : 1-16, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880659

RESUMO

Fluorometric determination of different biologically, industrially, and environmentally important analytes is a powerful technique because this technique has excellent selectivity, high sensitivity, rapid photoluminescence response, low cost, applicability to bioimaging, and low detection limit. Fluorescence imaging is a powerful technique for screening different analytes in the living system. Heterocyclic organic compounds have been extensively used as a fluorescence chemosensor for the determination of different biologically important cations like Co2+, Zn2+, Cu2+, Hg2+, Ag+, Ni2+, Cr3+, Al3+, Pd2+, Fe3+ Pt2+, Mn2+, Sn2+, Pd2+, Au3+, Pd2+, Cd2+, Pb2+ and other ions in biological and environmental systems. These compounds also showed significant biological applications such as anti-cancer, anti-ulcerogenic, antifungal, anti-inflammatory, anti neuropathic, antihistaminic, antihypertensive, analgesic, antitubercular, antioxidant, antimalarial, antiparasitic, antiglycation, antiviral anti-obesity, and antibacterial potency. In this review, we summarize the heterocyclic organic compounds based on fluorescent chemosensors and their applications in bioimaging studies for the recognition of different biologically important metal ions.

6.
Crit Rev Anal Chem ; : 1-27, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251012

RESUMO

Organic compounds display several electronic and structural features which enable their application in various fields, ranging from biological to non-biological. These compounds contain heteroatoms like sulfur, nitrogen and oxygen, which provide coordination sites to act as ligands in the field of coordination chemistry and are used as chemosensors to detect various metal ions. This review article covers different organic compounds including thiourea, Schiff base, pyridine, thiophene, coumarin, triazolyl pyrenes, imidazole, fluorescein, thiazole, tricarbocyanine, rhodanine, porphyrin, hydrazone, benzidine and other functional groups based chemosensors, that contain heteroatoms like sulfur, nitrogen and, oxygen for fluorimetric and colorimetric detection of Ag+ in different environmental, agricultural, and biological samples. Further, the sensing mechanism and performances of these chemosensors have been discussed, which could help the readers for the future design of highly efficient, selective, and sensitive chemosensors for the detection and determination of Ag+ ions.

7.
Crit Rev Anal Chem ; : 1-18, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35724248

RESUMO

Pyridine derivatives are the most common and significant heterocyclic compounds, which play an important role in various fields ranging from medicinal to chemosensing applications. Pyridine derivatives possess different biological activities such as antifungal, antibacterial, antioxidant, antiglycation, analgesic, antiparkinsonian, anticonvulsant, anti-inflammatory, ulcerogenic, antiviral, and anticancer activity. Furthermore, these derivatives have a high affinity for various ions and neutral species and can be used as a highly effective chemosensor for the determination of different species. In this review article, generally used synthetic routes of pyridine, structural characterization, medicinal applications, and potential of pyridine derivatives in analytical chemistry as chemosensors have been discussed. We hope this study will support the new thoughts to design biological active compounds and highly selective and effective chemosensors for the detection of various species (anions, cations, and neutral species) in various samples (environmental, agricultural, and biological).

8.
J Fluoresc ; 32(5): 1889-1898, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35749029

RESUMO

The development of a highly sensitive, selective, and efficient sensor for the determination and detection of Cr(III) ions remains a great challenge. Recently, some fluorescent chemosensors have been developed for the recognition of Cr(III) ions. But, the main drawbacks of the reported fluorescent chemosensors are the lack of selectivity and interference of anions and other trivalent cations. Herein, we designed and synthesized a novel thiazole-based fluorescent and colorimetric Schiff base chemosensor SB2 for the detection of Cr(III) ion by chemodosimetric approach. Using different analytical techniques including UV-vis, 13C-NMR, 1H-NMR, and FT-IR analysis the chemosensor SB2 was structurally characterized. The fully characterized chemosensor SB2 was used for the spectrofluorimetric and colorimetric detection of Cr(III) ions. Interestingly, chemosensor SB2 upon interaction with various metal cations including Ni2+, Na+, Cd2+, Ag+, Mn2+, K+, Zn2+, Cu2+, Hg2+, Co2+, Pb2+, Mg2+, Sn2+, Al3+ and Cr3+ displays highly selective and sensitive fluorescent (turn-on) and colorimetric (yellow to colorless) response toward Cr(III) ions. The fluorescence and UV-vis techniques confirmed the selective hydrolysis of azomethine group (-C = N-) of Schiff base chemosensor SB2 by Cr(III) ions. As a result, the fluorescence enhancement was observed that is corresponding to 2-hydroxy-1-nepthaldehyde (fluorophore). The chemosensor SB2 exhibits high interference performance towards Cr(III) ions over other metal cations in a wide pH range. Mover, the quite low detection limit was calculated to be 0.027 µg ml-1 (0.5 µM) (3σ/slop), lower than the maximum tolerable limits of Cr(III ions (10 µM) in drinking water permitted by the United States Environmental Protection Agency (EPA). These results show that chemosensor SB2 has great potential to detect selectively Cr(III) ions in the agricultural, environmental and biological analysis system.


Assuntos
Cromo/química , Corantes Fluorescentes , Bases de Schiff , Cátions , Corantes Fluorescentes/química , Metais/química , Bases de Schiff/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Crit Rev Anal Chem ; : 1-17, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35417281

RESUMO

Thioureas and their derivatives are organosulfur compounds having excellent biological and non-biological applications. These compounds contain S- and N-, which are nucleophilic and allow for establishing inter-and intramolecular hydrogen bonding. These characteristics make thiourea moiety a very important chemosensor to detect various environmental pollutants. This article covers a broad range of thioureas and their derivatives that are used for highly sensitive, selective, and simple fluorimetric (turn-off and turn-on), and colorimetric chemosensors for the detection and determination of different types of anions, such as CN-, AcO-, F-, ClO- and citrate ions, etc., and neutral analytes such as ATP, DCP, and Amlodipine, etc., in biological, environmental, and agriculture samples. Further, the sensing performances of thioureas-based chemosensors have been compared and discussed, which could help the readers for the future design of organic fluorescent and colorimetric sensors to detect anions and neutral analytes. We hope this study will support the new thoughts to design highly efficient, selective, and sensitive chemosensors to detect different analytes in biological, environmental, and agricultural samples.

10.
Sensors (Basel) ; 21(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923078

RESUMO

The present paper provides a description of the design, characterization, and use of a Hg2+ selective electrode (Hg2+-SE) for the determination of Hg2+ at ultra-traces levels in a variety of real samples. The ionophore in the proposed electrode is a new Schiff base, namely 4-bromo-2-[(4-methoxyphenylimino)methyl]phenol (BMPMP). All factors affecting electrode response including polymeric membrane composition, concentration of internal solution, pH sample solution, and response time were optimized. The optimum response of our electrode was obtained with the following polymeric membrane composition (% w/w): PVC, 32; o-NPOE, 64.5; BMPMP, 2 and NaTPB, 1.5. The potentiometric response of Hg2+-SE towards Hg2+ ion was linear in the wide range of concentrations (9.33 × 10-8-3.98 × 10-3 molL-1), while, the limit of detection of the proposed electrode was 3.98 × 10-8 molL-1 (8.00 µg L-1). The Hg2+-SE responds quickly to Hg2+ ions as the response time of less than 10 s. On the other hand, the slope value obtained for the developed electrode was 29.74 ± 0.1 mV/decade in the pH range of 2.0-9.0 in good agreement with the Nernstian response (29.50 mV/decade). The Hg2+-SE has relatively less interference with other metal ions. The Hg2+-SE was used as an indicator electrode in potentiometric titrations to estimate Hg2+ ions in waters, compact fluorescent lamp, and dental amalgam alloy and the accuracy of the developed electrode was compared with ICP-OES measurement values. Moreover, the new Schiff base (BMPMP) was synthesized and characterized using ATR-FTIR, elemental analysis, 1H NMR, and 13C NMR. The PVC membranes containing BMPMP as an ionophore unloaded and loaded with Hg(II) are reported by scanning electron microscope images (SEM) along with energy-dispersive X-ray spectroscopy (EDX) spectra.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 253: 119552, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33621935

RESUMO

In this paper, dispersive liquid-liquid microextraction (DLLME), long optical path microcells, and a selective chromogenic reagent were employed to improve the analytical efficiency of cobalt determination by spectrophotometry. The methodology proposed in the present study is based upon the microextraction of a cobalt(II) complex with 1-[4-[(2-hydroxynaphthalen-1-yl)methylideneamino] phenyl]ethanone (HNE) by DLLME and measurement of the absorbance of the sedimented phase using a microcell with an optical path length of 50 mm (Microcell-50). DLLME was performed using a binary mixture containing 900 µL of methanol as a dispersing solvent and 400 µL of CHCl3 (extraction solvent) at pH 6-8 adjusted by a mixture of HCl and NaOH. The electronic spectrum of the dark brown complex recorded in the sedimented phase using Microcell-50 shows a well-defined peak at λmax 324 ± 3 nm with a molar absorptivity of 1.08 × 106 M-1 cm-1. Cobalt was monitored at a detection limit (LOD) of 0.08 µg L-1 and in the linear concentration range of 0.45-10 µg L-1, while the limit of quantitation (LOQ), relative standard deviation (RSD), and the enhancement factor (EF) were 0.264, 1.6 µgL-1, and 223, respectively. Our method was evaluated by determining cobalt in certified reference materials and experimental samples, and the results were compared with ICP-MS measurements. Moreover, the chemical structure of the [Co(C38H28O2N)2] complex was suggested through using different characterization techniques such as Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), thermal analysis, and powder X-ray diffraction.

12.
J Enzyme Inhib Med Chem ; 31(sup4): 7-19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557134

RESUMO

This article describes the synthesis of some novel heterocyclic sulfonamides having biologically active thiophene 3, 4, 5, 6, coumarin 8, benzocoumarin 9, thiazole 7, piperidine 10, pyrrolidine 11, pyrazole 14 and pyridine 12, 13. Starting with 4-(1-(2-(2-cyanoacetyl)hydrazono)ethyl)-N-ethyl-N-methylbenzenesulfonamide (2), which was prepared from condensation of acetophenone derivative 1 with 2-cyanoacetohydrazide. The structures of the newly synthesized compounds were confirmed by elemental analysis, IR, 1H NMR, 13C NMR, 19F NMR and MS spectral data. All the newly synthesized heterocyclic sulfonamides were evaluated as in-vitro anti-breast cancer cell line (MCF7) and as in-vitro antimicrobial agents. Compounds 8, 5 and 11 were more active than MTX reference drug and compounds 12, 7, 4, 14, 5 and 8 were highly potent against Klebsiella pneumonia. Molecular operating environment performed virtual screening using molecular docking studies of the synthesized compounds. The results indicated that some prepared compounds are suitable inhibitor against dihydrofolate reductase (DHFR) enzyme (PDBSD:4DFR) with further modification.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Simulação de Acoplamento Molecular , Nitrilas/farmacologia , Sulfonamidas/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/química , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nitrilas/síntese química , Nitrilas/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA