Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur Urol ; 83(6): 486-494, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36717286

RESUMO

BACKGROUND: Novel treatments and trial designs remain a high priority for bacillus Calmette-Guerin (BCG)-unresponsive non-muscle-invasive bladder cancer (NMIBC) patients. OBJECTIVE: To evaluate the safety and preliminary efficacy of anti-PD-L1 directed therapy with durvalumab (D), durvalumab plus BCG (D + BCG), and durvalumab plus external beam radiation therapy (D + EBRT). DESIGN, SETTING, AND PARTICIPANTS: A multicenter phase 1 trial was conducted at community and academic sites. INTERVENTION: Patients received 1120 mg of D intravenously every 3 wk for eight cycles. D + BCG patients also received full-dose intravesical BCG weekly for 6 wk with BCG maintenance recommended. D + EBRT patients received concurrent EBRT (6 Gy × 3 in cycle 1 only). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Post-treatment cystoscopy and urine cytology were performed at 3 and 6 -mo, with bladder biopsies required at the 6-mo evaluation. The recommended phase 2 dose (RP2D) for each regimen was the primary endpoint. Secondary endpoints included toxicity profiles and complete response (CR) rates. RESULTS AND LIMITATIONS: Twenty-eight patients were treated in the D (n = 3), D + BCG (n = 13), and D + EBRT (n = 12) cohorts. Full-dose D, full-dose BCG, and 6 Gy fractions × 3 were determined as the RP2Ds. One patient (4%) experienced a grade 3 dose limiting toxicity event of autoimmune hepatitis. The 3-mo CR occurred in 64% of all patients and in 33%, 85%, and 50% within the D, D + BCG, and D + EBRT cohorts, respectively. Twelve-month CRs were achieved in 46% of all patients and in 73% of D + BCG and 33% of D + EBRT patients. CONCLUSIONS: D combined with intravesical BCG or EBRT proved feasible and safe in BCG-unresponsive NMIBC patients. Encouraging preliminary efficacy justifies further study of combination therapy approaches. PATIENT SUMMARY: Durvalumab combination therapy can be safely administered to non-muscle-invasive bladder cancer patients with the goal of increasing durable response rates.


Assuntos
Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Humanos , Bexiga Urinária/patologia , Vacina BCG/efeitos adversos , Administração Intravesical , Neoplasias da Bexiga Urinária/patologia , Adjuvantes Imunológicos , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia/patologia
2.
Blood ; 140(4): 359-373, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35436326

RESUMO

Although Ras/mitogen-activated protein kinase (MAPK) signaling is activated in most human cancers, attempts to target this pathway using kinase-active site inhibitors have not typically led to durable clinical benefit. To address this shortcoming, we sought to test the feasibility of an alternative targeting strategy, focused on the ERK2 substrate binding domains, D and DEF binding pocket (DBP). Disabling the ERK2-DBP domain in mice caused baseline erythrocytosis. Consequently, we investigated the role of the ERK2-D and -DBP domains in disease, using a JAK2-dependent model of polycythemia vera (PV). Of note, inactivation of the ERK2-DBP domain promoted the progression of disease from PV to myelofibrosis, suggesting that the ERK2-DBP domain normally opposes progression. ERK2-DBP inactivation also prevented oncogenic JAK2 kinase (JAK2V617F) from promoting oncogene-induced senescence in vitro. The ERK2-DBP mutation attenuated JAK2-mediated oncogene-induced senescence by preventing the physical interaction of ERK2 with the transcription factor Egr1. Because inactivation of the ERK2-DBP created a functional ERK2 kinase limited to binding substrates through its D domain, these data suggested that the D domain substrates were responsible for promoting oncogene-induced progenitor growth and tumor progression and that pharmacologic targeting of the ERK2-D domain may attenuate cancer cell growth. Indeed, pharmacologic agents targeting the ERK2-D domain were effective in attenuating the growth of JAK2-dependent myeloproliferative neoplasm cell lines. Taken together, these data indicate that the ERK-D and -DBP domains can play distinct roles in the progression of neoplasms and that the D domain has the potential to be a potent therapeutic target in Ras/MAPK-dependent cancers.


Assuntos
Janus Quinase 2 , Policitemia Vera , Animais , Linhagem Celular , Humanos , Janus Quinase 2/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Proteínas Quinases Ativadas por Mitógeno , Fosforilação , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 117(46): 28980-28991, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139544

RESUMO

More than 70% of Epstein-Barr virus (EBV)-negative Hodgkin lymphoma (HL) cases display inactivation of TNFAIP3 (A20), a ubiquitin-editing protein that regulates nonproteolytic protein ubiquitination, indicating the significance of protein ubiquitination in HL pathogenesis. However, the precise mechanistic roles of A20 and the ubiquitination system remain largely unknown in this disease. Here, we performed high-throughput CRISPR screening using a ubiquitin regulator-focused single-guide RNA library in HL lines carrying either wild-type or mutant A20. Our CRISPR screening highlights the essential oncogenic role of the linear ubiquitin chain assembly complex (LUBAC) in HL lines, which overlaps with A20 inactivation status. Mechanistically, LUBAC promotes IKK/NF-κB activity and NEMO linear ubiquitination in A20 mutant HL cells, which is required for prosurvival genes and immunosuppressive molecule expression. As a tumor suppressor, A20 directly inhibits IKK activation and HL cell survival via its C-terminal linear-ubiquitin binding ZF7. Clinically, LUBAC activity is consistently elevated in most primary HL cases, and this is correlated with high NF-κB activity and low A20 expression. To further understand the complete mechanism of NF-κB activation in A20 mutant HL, we performed a specifically designed CD83-based NF-κB CRISPR screen which led us to identify TAK1 kinase as a major mediator for NF-κB activation in cells dependent on LUBAC, where the LUBAC-A20 axis regulates TAK1 and IKK complex formation. Finally, TAK1 inhibitor Takinib shows promising activity against HL in vitro and in a xenograft mouse model. Altogether, these findings provide strong support that targeting LUBAC or TAK1 could be attractive therapeutic strategies in A20 mutant HL.


Assuntos
Doença de Hodgkin/genética , Doença de Hodgkin/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , NF-kappa B/metabolismo , Ligação Proteica , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitinação
4.
Case Rep Oncol Med ; 2015: 895151, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25692060

RESUMO

Extramammary Paget's disease (EMPD) is a rare cancer. Although EMPD is usually noninvasive and treated with local therapy, once metastatic the prognosis of EMPD is poor and treatment options are limited. We report a case of a complete response to single agent trastuzumab in a hemodialysis patient with metastatic Her2/neu overexpressed EMPD of the scrotum. Molecular profiling of his case as well as 12 other EMPD and 8 mammary Paget disease (MPD) cases was completed and revealed multiple biomarker aberrations. Overexpression of Her2 was frequently noted (30%-40%) in both EMPD and MPD patients and when present can be effectively treated with Her2 targeted agents. Trastuzumab therapy can be safely utilized in a hemodialysis patient. In addition, multiple protein overexpression and loss were seen in EMPD including PD-1, PD-L1, PTEN, and AR as well as PIK3CA mutation. These findings may lead to possible therapeutic interventions targeting these pathways in a disease with few effective treatment options.

5.
Adv Hematol ; 2011: 875135, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22162690

RESUMO

Thymidine phosphorylase may be overexpressed in both neoplastic cells and tumor stromal cells in a variety of malignancies. Our study explores thymidine phosphorylase expression in lymph nodes (LNs) from patients with mycosis fungoides (MF) or Sézary syndrome (SS). In MF/SS, the LNs may have a pathologic diagnosis of either dermatopathic lymphadenopathy (LN-DL) or involvement by MF/SS (LN-MF). We performed immunohistochemical staining on MF/SS lymph nodes using antibodies to thymidine phosphorylase, CD68, CD21, CD3, and CD4. In both LN-DL and benign nodes, thymidine phosphorylase staining was noted only in macrophages, dendritic cells, and endothelial cells. In LN-MF, thymidine phosphorylase expression was also noted in subsets of intermediate to large neoplastic T cells. Concurrent CD68, CD21, CD3, and CD4 staining supported the above observations. Similar results were noted in the skin and in LN-MF with large cell transformation. Other T-cell lymphomas were also examined (total 7 cases); only enteropathy-type T-cell lymphoma (1 case) showed TP positivity in neoplastic T lymphocytes. We demonstrated that thymidine phosphorylase staining is present in neoplastic T cells in mycosis fungoides. The exact mechanism needs further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA