Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; 355: 8-14, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35850021

RESUMO

BACKGROUND AND AIMS: Extracellular matrix (ECM) remodeling is one of the key components in the formation of vulnerable atherosclerotic plaques and cardiovascular events. We recently showed that the full-length ECM-proteoglycan osteoglycin was associated with plaque vulnerability and future cardiovascular events. In the present study, we aimed to investigate the association of cleaved osteoglycin with plaque phenotype. METHODS: Two-hundred human carotid plaques were analyzed by immunohistochemistry. Cleaved osteoglycin and active caspase-3 were assessed by ELISA. ECM components (collagen, elastin and glycosaminoglycans) were assessed by colorimetric assays in plaque tissue homogenates. Matrix metalloproteinases (MMPs) were assessed using Milliplex. MMP-cleavage of osteoglycin and its effect on apoptosis were studied in vitro. Cardiovascular events were recorded during follow-up using national registries. RESULTS: Plaque levels of cleaved osteoglycin were significantly higher in asymptomatic plaques and correlated to α-actin plaque area, collagen, elastin and inversely to lipids, active. caspase-3 and a histological vulnerability index. Cleaved osteoglycin correlated to several MMPs, especially MMP-12, which was also shown to cleave osteoglycin in vitro. In vitro cleavage of osteoglycin was also associated with less smooth muscle cell apoptosis. Patients with high plaque levels of cleaved osteoglycin had a significantly lower risk to suffer from future cardiovascular events. CONCLUSIONS: The current study shows that cleaved osteoglycin is associated with a stable plaque phenotype and lower risk for future cardiovascular events. Potentially due to reduced cell apoptosis and ability to retain LDL. These results indicate that targeting the cleavage of osteoglycin may be a potential therapeutic strategy to stabilize plaques.


Assuntos
Doenças Cardiovasculares , Placa Aterosclerótica , Caspase 3 , Colágeno , Elastina/genética , Humanos , Metaloproteinases da Matriz , Peptídeo Hidrolases , Fenótipo , Placa Aterosclerótica/patologia
2.
Eur Heart J ; 43(19): 1864-1877, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35567557

RESUMO

AIMS: Inflammation is a key factor in atherosclerosis. The transcription factor interferon regulatory factor-5 (IRF5) drives macrophages towards a pro-inflammatory state. We investigated the role of IRF5 in human atherosclerosis and plaque stability. METHODS AND RESULTS: Bulk RNA sequencing from the Carotid Plaque Imaging Project biobank were used to mine associations between major macrophage associated genes and transcription factors and human symptomatic carotid disease. Immunohistochemistry, proximity extension assays, and Helios cytometry by time of flight (CyTOF) were used for validation. The effect of IRF5 deficiency on carotid plaque phenotype and rupture in ApoE-/- mice was studied in an inducible model of plaque rupture. Interferon regulatory factor-5 and ITGAX/CD11c were identified as the macrophage associated genes with the strongest associations with symptomatic carotid disease. Expression of IRF5 and ITGAX/CD11c correlated with the vulnerability index, pro-inflammatory plaque cytokine levels, necrotic core area, and with each other. Macrophages were the predominant CD11c-expressing immune cells in the plaque by CyTOF and immunohistochemistry. Interferon regulatory factor-5 immunopositive areas were predominantly found within CD11c+ areas with a predilection for the shoulder region, the area of the human plaque most prone to rupture. Accordingly, an inducible plaque rupture model of ApoE-/-Irf5-/- mice had significantly lower frequencies of carotid plaque ruptures, smaller necrotic cores, and less CD11c+ macrophages than their IRF5-competent counterparts. CONCLUSION: Using complementary evidence from data from human carotid endarterectomies and a murine model of inducible rupture of carotid artery plaque in IRF5-deficient mice, we demonstrate a mechanistic link between the pro-inflammatory transcription factor IRF5, macrophage phenotype, plaque inflammation, and its vulnerability to rupture.


Assuntos
Aterosclerose , Fatores Reguladores de Interferon , Macrófagos , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos , Inflamação/metabolismo , Fatores Reguladores de Interferon/metabolismo , Macrófagos/imunologia , Camundongos , Necrose , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA