Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(44): 99147-99159, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36279064

RESUMO

To combat the adverse environmental effects of fossil fuel burning for power generation and to conserve it for strategic use, new, clean, and renewable energy sources are being utilized for power generation. The study presents techno-economic analysis of a grid-connected solar photovoltaic (PV) power plant to partially meet the energy consumption of the people of Kuttiady village in Kerala, India. The proposed 2315.5 kW installed capacity PV is found to be feasible for the village and can produce 3878.3 MWh of energy annually while the demand is 4044.86 MWh at a plant capacity factor of 19.1% and cost of energy of 290.73 $/MWh. The performance of the proposed PV plant measured in terms of final yield (4.59 h), reference yield (5.64 h), and performance ratio (82%) is compatible and even higher with many such plants in India and other countries. Economic sensitivity analysis is also performed by varying the interest, discount, and inflation rates to check their effect on cost of energy, benefit cost ratio, and payback period. As the interest and discount rates decrease, the cost of energy and payback period also decreases while benefit cost ratio increases. The proposed plant can help in avoiding around 785 tons of greenhouse gases entering the local atmosphere of the Kuttiady village.


Assuntos
Energia Solar , Humanos , Clima , Índia
2.
Chem Rec ; 22(7): e202100330, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35199444

RESUMO

The perovskites solar cells (PSCs) is composed of multifaceted device architecture and involve complex charge extraction (both electronic and ionic), this makes the task demanding to unlock the origin of the different physical process that occurs in a PSC. The capacitance in PSCs depends on several external perturbations including frequency, illumination, temperature, applied bias, and importantly on the interface modification of perovskites/charge selective contact. Arguably, different features including interfacial and bulk; ionic, and electronic charge transport in PSCs occur at different time scales. Capacitance spectroscopy is a prevailing technique to unravel the various physical phenomenon that occurs in a PSC at different time scales. A deeper knowledge of the capacitive response of a PSCs is essential to understand the charge carrier kinetics and unlock the device physics. This work highlights the capacitive response of PSCs and its application to unlock the device physics which is essential for the further optimization and improvement of the device performance.

3.
Sci Rep ; 10(1): 15388, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958838

RESUMO

In recent year, fatty acids (FAs) are heavily studied for heat storage applications and they have shown promising advantages over other organic phase change materials (PCMs). Among the FAs; capric, palmitic and stearic acids are the most studied PCMs. Several researchers have investigated these FAs and tried to improve their thermal properties, mainly by adding different high conducting fillers, such as graphite, metal foams, CNTs, graphene etc. In most cases, these fillers improved the thermal conductivity and heat transfer property but reduce the heat storage capacity considerably. These composites also lose the mixing uniformity during the charging and discharging process. To overcome these issues, selected FAs were grafted on the functionalized CNT surfaces and used as conductive fillers to prepare FA based composite PCMs. This process significantly contributed to prevent the drastic reduction of the overall heat storage capacity and also showed better dispersion in both solid and liquid state. Thermal cycling test showed the variations in the thermal energy storage values of all composite PCMs, however, within the tolerable grade and they had appreciable phase change stability and good chemical stability even after 2,000 cycles.

4.
Sci Rep ; 10(1): 9168, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513930

RESUMO

Fatty alcohols have been identified as promising organic phase change materials (PCMs) for thermal energy storage, because of their suitable temperature range, nontoxicity and can be obtained from both natural and synthetic sources. Like all other organic PCMs, octadecanol (OD) as PCM suffers from low thermal conductivity (TC). In this work, to enhance its TC, it was grafted on the functionalized MWCNT and were used as a conductive filler to enhance overall thermal properties of OD in a composite PCM (CPCMs) structure. The OD/OD-g-MWCNT sample showed better dispersion within the composites and the presence of additional OD boosted the overall heat storage enthalpy compared to that of plane composite sample with OD/MWCNT. In a non-quantitative approach, it was observed that, any increase in grafting ratio of OD increases the heat storage enthalpy of the composites. The heat storage enthalpy of (267.7 J/g) OD/OD-g-MWCNT(4:1)-5wt% composite PCM had reached very close to the heat storage enthalpy value of pure OD (269.3 J/g), and much higher than that of OD/MWCNT-5wt% (234.5 J/g). Champion sample i.e. OD/OD-g-MWCNT (4:1)-5wt%, showed good heat storage enthalpy, cycling performance, thermal stability and TC enhancement by 262.5%.

5.
RSC Adv ; 8(59): 33775-33785, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35548819

RESUMO

The removal of environmental dust particles from optically transparent glass surfaces is considered, and the dynamics of the dust particles on the inclined hydrophobic glass surface is examined. The glass surfaces are coated by functionalized nano-sized silica particles to create a hydrophobic wetting state on the surface. A thin layer of environmental dust particles, collected from the local area of Dammam in the Kingdom of Saudi Arabia (KSA), is deposited on the surface while mimicking the dust accumulation on the surfaces in the dusty days of KSA. In order to increase the removal rate of the dust particles from the inclined hydrophobic glass surfaces, high density particles, which are higher than the density of the dust particles, are locally distributed on the dust particle-deposited surface while generating the avalanche influence on the inclined surface. The motion of the dust and high density particles on the inclined surface is monitored using a high speed camera. The predictions of the dust particles' acceleration and velocity are compared to those obtained from the high speed camera data. It is found that the predictions of velocity and acceleration of the dust particles agree well with the experimental data. Local insertion of the high density particles generates avalanche influence on the inclined surface while initiating the removal of the dust particles from the hydrophobic surface at small inclination angles. The size of the area where the dust particles are removed from the inclined surface increases with enlarging coverage area of the high density particles. The dust-removed surface, under the avalanche influence, improves the UV-visible transmittance of the hydrophobic glass.

6.
Sci Rep ; 6: 38678, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934970

RESUMO

In this study, nanowires/nanowalls were generated on a silicon wafer through a chemical etching method. Octadecyltrichlorosilane (OTS) was deposited onto the nanowire/nanowall surfaces to alter their hydrophobicity. The hydrophobic characteristics of the surfaces were further modified via a 1.5-µm-thick layer of n-octadecane coating on the OTS-deposited surface. The hydrophobic characteristics of the resulting surfaces were assessed using the sessile water droplet method. Scratch and ultraviolet (UV)-visible reflectivity tests were conducted to measure the friction coefficient and reflectivity of the surfaces. The nanowires formed were normal to the surface and uniformly extended 10.5 µm to the wafer surface. The OTS coating enhanced the hydrophobic state of the surface, and the water contact angle increased from 27° to 165°. The n-octadecane coating formed on the OTS-deposited nanowires/nanowalls altered the hydrophobic state of the surface. This study provides the first demonstration that the surface wetting characteristics change from hydrophobic to hydrophilic after melting of the n-octadecane coating. In addition, this change is reversible; i.e., the hydrophilic surface becomes hydrophobic after the n-octadecane coating solidifies at the surface, and the process again occurs in the opposite direction after the n-octadecane coating melts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA