Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991486

RESUMO

Visual signal transduction takes place within a stack of flattened membranous 'discs' enclosed within the light-sensitive photoreceptor outer segment. The highly curved rims of these discs, formed in the process of disc enclosure, are fortified by large hetero-oligomeric complexes of two homologous tetraspanin proteins, PRPH2 (a.k.a. peripherin-2 or rds) and ROM1. While mutations in PRPH2 affect the formation of disc rims, the role of ROM1 remains poorly understood. In this study, we found that the knockout of ROM1 causes a compensatory increase in the disc content of PRPH2. Despite this increase, discs of ROM1 knockout mice displayed a delay in disc enclosure associated with a large diameter and lack of incisures in mature discs. Strikingly, further increasing the level of PRPH2 rescued these morphological defects. We next showed that disc rims are still formed in a knockin mouse in which the tetraspanin body of PRPH2 was replaced with that of ROM1. Together, these results demonstrate that, despite its contribution to the formation of disc rims, ROM1 can be replaced by an excess of PRPH2 for timely enclosure of newly forming discs and establishing normal outer segment structure.


Assuntos
Proteínas do Olho , Células Fotorreceptoras , Camundongos , Animais , Periferinas/genética , Periferinas/metabolismo , Proteínas do Olho/metabolismo , Células Fotorreceptoras/metabolismo , Tetraspaninas/genética , Mutação , Camundongos Knockout
2.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693615

RESUMO

Visual signal transduction takes place within a stack of flattened membranous "discs" enclosed within the light-sensitive photoreceptor outer segment. The highly curved rims of these discs, formed in the process of disc enclosure, are fortified by large hetero-oligomeric complexes of two homologous tetraspanin proteins, PRPH2 (a.k.a. peripherin-2 or rds) and ROM1. While mutations in PRPH2 affect the formation of disc rims, the role of ROM1 remains poorly understood. In this study, we found that the knockout of ROM1 causes a compensatory increase in the disc content of PRPH2. Despite this increase, discs of ROM1 knockout mice displayed a delay in disc enclosure associated with a large diameter and lack of incisures in mature discs. Strikingly, further increasing the level of PRPH2 rescued these morphological defects. We next showed that disc rims are still formed in a knockin mouse in which the tetraspanin body of PRPH2 was replaced with that of ROM1. Together, these results demonstrate that, despite its contribution to the formation of disc rims, ROM1 can be replaced by an excess of PRPH2 for timely enclosure of newly forming discs and establishing normal outer segment structure.

4.
Commun Biol ; 6(1): 933, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700068

RESUMO

Usher syndrome (USH) is the leading cause of combined deafness and blindness, with USH2A being the most prevalent form. The mechanisms responsible for this debilitating sensory impairment remain unclear. This study focuses on characterizing the auditory phenotype in a mouse model expressing the c.2290delG mutation in usherin equivalent to human frameshift mutation c.2299delG. Previously we described how this model reproduces patient's retinal phenotypes. Here, we present the cochlear phenotype, showing that the mutant usherin, is expressed during early postnatal stages. The c.2290delG mutation results in a truncated protein that is mislocalized within the cell body of the hair cells. The knock-in model also exhibits congenital hearing loss that remains consistent throughout the animal's lifespan. Structurally, the stereocilia bundles, particularly in regions associated with functional hearing loss, are disorganized. Our findings shed light on the role of usherin in maintaining structural support, specifically in longer inner hair cell stereocilia, during development, which is crucial for proper bundle organization and hair cell function. Overall, we present a genetic mouse model with cochlear defects associated with the c.2290delG mutation, providing insights into the etiology of hearing loss and offering potential avenues for the development of effective therapeutic treatments for USH2A patients.


Assuntos
Proteínas da Matriz Extracelular , Células Ciliadas Auditivas , Estereocílios , Animais , Humanos , Camundongos , Cílios , Modelos Animais de Doenças , Células Ciliadas Auditivas Internas , Mutação , Proteínas da Matriz Extracelular/genética
5.
Adv Exp Med Biol ; 1415: 277-281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440045

RESUMO

The light-sensitive outer segment organelle of photoreceptor cells contains a stack of hundreds of flat, disc-shaped membranes called discs. The rims of these discs contain a photoreceptor-specific tetraspanin protein peripherin-2 (also known as rds or PRPH2). Mutations in the PRPH2 gene lead to a wide variety of inherited retinal degenerations in humans. The vast majority of these mutations occur within a large, intradiscal loop of peripherin-2, known as the D2 loop. The D2 loop mediates well-established intermolecular interactions of peripherin-2 molecules among themselves and a homologous protein ROM1. These interactions lead to the formation of large, highly ordered oligomers. In this chapter, we discuss the supramolecular organization of peripherin-2/ROM1 complexes and their contribution to the process of outer segment disc morphogenesis and enclosure.


Assuntos
Degeneração Retiniana , Tetraspaninas , Humanos , Periferinas/genética , Tetraspaninas/genética , Degeneração Retiniana/genética , Mutação , Morfogênese , Proteínas do Olho/genética
6.
Cell Mol Life Sci ; 80(8): 214, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37466729

RESUMO

Mutations in the photoreceptor-specific tetraspanin gene peripherin-2 (PRPH2) lead to widely varying forms of retinal degeneration ranging from retinitis pigmentosa to macular dystrophy. Both inter- and intra-familial phenotypic heterogeneity has led to much interest in uncovering the complex pathogenic mechanisms of PRPH2-associated disease. Majority of disease-causing mutations in PRPH2 reside in the second intradiscal loop, wherein seven cysteines control protein folding and oligomerization. Here, we utilize knockin models to evaluate the role of three D2 loop cysteine mutants (Y141C, C213Y and C150S), alone or in combination. We elucidated how these mutations affect PRPH2 properties, including oligomerization and subcellular localization, and contribute to disease processes. Results from our structural, functional and molecular studies revealed that, in contrast to our understanding from prior investigations, rods are highly affected by PRPH2 mutations interfering with oligomerization and not merely by the haploinsufficiency associated with these mutations. On the other hand, cones are less affected by the toxicity of the mutant protein and significantly reduced protein levels, suggesting that knockdown therapeutic strategies may sustain cone functionality for a longer period. This observation provides useful data to guide and simplify the current development of effective therapeutic approaches for PRPH2-associated diseases that combine knockdown with high levels of gene supplementation needed to generate prolonged rod improvement.


Assuntos
Degeneração Macular , Degeneração Retiniana , Retinose Pigmentar , Humanos , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Retinose Pigmentar/metabolismo , Degeneração Macular/patologia , Tetraspaninas/metabolismo , Mutação/genética
7.
Nat Commun ; 14(1): 972, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810733

RESUMO

Usher syndrome (USH) is the leading cause of combined deafness-blindness with type 2 A (USH2A) being the most common form. Knockout models of USH proteins, like the Ush2a-/- model that develops a late-onset retinal phenotype, failed to mimic the retinal phenotype observed in patients. Since patient's mutations result in the expression of a mutant protein and to determine the mechanism of USH2A, we generated and evaluated an usherin (USH2A) knock-in mouse expressing the common human disease-mutation, c.2299delG. This mouse exhibits retinal degeneration and expresses a truncated, glycosylated protein which is mislocalized to the photoreceptor inner segment. The degeneration is associated with a decline in retinal function, structural abnormalities in connecting cilium and outer segment and mislocaliztion of the usherin interactors very long G-protein receptor 1 and whirlin. The onset of symptoms is significantly earlier compared to Ush2a-/-, proving expression of mutated protein is required to recapitulate the patients' retinal phenotype.


Assuntos
Proteínas da Matriz Extracelular , Proteínas de Membrana , Síndromes de Usher , Animais , Humanos , Camundongos , Proteínas da Matriz Extracelular/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Mutação , Síndromes de Usher/genética
8.
Front Pharmacol ; 13: 919667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873559

RESUMO

Dysregulation of retinal metabolism is emerging as one of the major reasons for many inherited retinal diseases (IRDs), a leading cause of blindness worldwide. Thus, the identification of a common regulator that can preserve or revert the metabolic ecosystem to homeostasis is a key step in developing a treatment for different forms of IRDs. Riboflavin (RF) and its derivatives (flavins), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are essential cofactors for a wide range of cellular metabolic processes; hence, they are particularly critical in highly metabolically active tissues such as the retina. Patients with RF deficiency (ariboflavinosis) often display poor photosensitivity resulting in impaired low-light vision. We have identified a novel retina-specific RF binding protein called retbindin (Rtbdn), which plays a key role in retaining flavin levels in the neural retina. This role is mediated by its specific localization at the interface between the neural retina and retinal pigment epithelium (RPE), which is essential for metabolite and nutrient exchange. As a consequence of this vital function, Rtbdn's role in flavin utilization and metabolism in retinal degeneration is discussed. The principal findings are that Rtbdn helps maintain high levels of retinal flavins, and its ablation leads to an early-onset retinal metabolic dysregulation, followed by progressive degeneration of rod and cone photoreceptors. Lack of Rtbdn reduces flavin levels, forcing the neural retina to repurpose glucose to reduce the production of free radicals during ATP production. This leads to metabolic breakdown followed by retinal degeneration. Assessment of the role of Rtbdn in several preclinical retinal disease models revealed upregulation of its levels by several folds prior to and during the degenerative process. Ablation of Rtbdn in these models accelerated the rate of retinal degeneration. In agreement with these in vivo studies, we have also demonstrated that Rtbdn protects immortalized cone photoreceptor cells (661W cells) from light damage in vitro. This indicates that Rtbdn plays a neuroprotective role during retinal degeneration. Herein, we discussed the specific function of Rtbdn and its neuroprotective role in retinal metabolic homeostasis and its role in maintaining retinal health.

9.
Redox Biol ; 54: 102375, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738087

RESUMO

Ariboflavinosis is a pathological condition occurring as a result of riboflavin deficiency. This condition is treatable if detected early enough, but it lacks timely diagnosis. Critical symptoms of ariboflavinosis include neurological and visual manifestations, yet the effects of flavin deficiency on the retina are not well investigated. Here, using a diet induced mouse model of riboflavin deficiency, we provide the first evidence of how retinal function and metabolism are closely intertwined with riboflavin homeostasis. We find that diet induced riboflavin deficiency causes severe decreases in retinal function accompanied by structural changes in the neural retina and retinal pigment epithelium (RPE). This is preceded by increased signs of cellular oxidative stress and metabolic disorder, in particular dysregulation in lipid metabolism, which is essential for both photoreceptors and the RPE. Though many of these deleterious phenotypes can be ameliorated by riboflavin supplementation, our data suggests that some patients may continue to suffer from multiple pathologies at later ages. These studies provide an essential cellular and mechanistic foundation linking defects in cellular flavin levels with the manifestation of functional deficiencies in the visual system and paves the way for a more in-depth understanding of the cellular consequences of ariboflavinosis.


Assuntos
Epitélio Pigmentado da Retina , Deficiência de Riboflavina , Animais , Homeostase , Camundongos , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Riboflavina/metabolismo , Riboflavina/farmacologia , Deficiência de Riboflavina/metabolismo , Deficiência de Riboflavina/patologia
10.
FASEB J ; 36(5): e22284, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344225

RESUMO

Prph2 is a photoreceptor-specific tetraspanin with an essential role in the structure and function of photoreceptor outer segments. PRPH2 mutations cause a multitude of retinal diseases characterized by the degeneration of photoreceptors as well as defects in neighboring tissues such as the RPE. While extensive research has analyzed photoreceptors, less attention has been paid to these secondary defects. Here, we use different Prph2 disease models to evaluate the damage of the RPE arising from photoreceptor defects. In Prph2 disease models, the RPE exhibits structural abnormalities and cell loss. Furthermore, RPE functional defects are observed, including impaired clearance of phagocytosed outer segment material and increased microglia activation. The severity of RPE damage is different between models, suggesting that the different abnormal outer segment structures caused by Prph2 disease mutations lead to varying degrees of RPE stress and thus influence the clinical phenotype observed in patients.


Assuntos
Periferinas , Doenças Retinianas , Tetraspaninas , Humanos , Mutação , Periferinas/genética , Células Fotorreceptoras , Doenças Retinianas/genética , Epitélio Pigmentado da Retina , Tetraspaninas/genética
11.
Antioxidants (Basel) ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34679728

RESUMO

Retinal oxidative stress is a common secondary feature of many retinal diseases. Though it may not be the initial insult, it is a major contributor to the pathogenesis of highly prevalent retinal dystrophic diseases like macular degeneration, diabetic retinopathy, and retinitis pigmentosa. We explored the role of superoxide dismutase 3 (SOD3) in retinal homeostasis since SOD3 protects the extracellular matrix (ECM) from oxidative injury. We show that SOD3 is mainly extracellularly localized and is upregulated as a result of environmental and pathogenic stress. Ablation of SOD3 resulted in reduced functional electroretinographic responses and number of photoreceptors, which is exacerbated with age. By contrast, overexpression showed increased electroretinographic responses and increased number of photoreceptors at young ages, but appears deleterious as the animal ages, as determined from the associated functional decline. Our exploration shows that SOD3 is vital to retinal homeostasis but its levels are tightly regulated. This suggests that SOD3 augmentation to combat oxidative stress during retinal degenerative changes may only be effective in the short-term.

12.
Pharmaceutics ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34575586

RESUMO

Gene and drug delivery to the retina is a critical therapeutic goal. While the majority of inherited forms of retinal degeneration affect the outer retina, specifically the photoreceptors and retinal pigment epithelium, effective targeted delivery to this region requires invasive subretinal delivery. Our goal in this work was to evaluate two innovative approaches for increasing both the persistence of delivered nanospheres and their penetration into the outer retina while using the much less invasive intravitreal delivery method. We formulated novel hyaluronic acid nanospheres (HA-NS, 250 nm and 500 nm in diameter) conjugated to fluorescent reporters and delivered them intravitreally to the adult Balb/C mouse retina. They exhibited persistence in the vitreous and along the inner limiting membrane (ILM) for up to 30 days (longest timepoint examined) but little retinal penetration. We thus evaluated the ability of the small molecule, sulfotyrosine, to disrupt the ILM, and found that 3.2 µg/µL sulfotyrosine led to significant improvement in delivery to the outer retina following intravitreal injections without causing retinal inflammation, degeneration, or loss of function. Co-delivery of sulfotyrosine and HA-NS led to robust improvements in penetration of HA-NS into the retina and accumulation along the interface between the photoreceptors and the retinal pigment epithelium. These exciting findings suggest that sulfotyrosine and HA-NS may be an effective strategy for outer retinal targeting after intravitreal injection.

13.
Front Neurosci ; 15: 652215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815052

RESUMO

Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.

14.
J Neurosci ; 41(16): 3588-3596, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33707293

RESUMO

Mutations in the PRPH2 gene encoding the photoreceptor-specific protein PRPH2 (also known as peripherin-2 or rds) cause a broad range of autosomal dominant retinal diseases. Most of these mutations affect the structure of the light-sensitive photoreceptor outer segment, which is composed of a stack of flattened "disc" membranes surrounded by the plasma membrane. The outer segment is renewed on a daily basis in a process whereby new discs are added at the outer segment base and old discs are shed at the outer segment tip. New discs are formed as serial membrane evaginations, which eventually enclose through a complex process of membrane remodeling (completely in rods and partially in cones). As disc enclosure proceeds, PRPH2 localizes to the rims of enclosed discs where it forms oligomers which fortify the highly curved membrane structure of these rims. In this study, we analyzed the outer segment phenotypes of mice of both sexes bearing a single copy of either the C150S or the Y141C PRPH2 mutation known to prevent or increase the degree of PRPH2 oligomerization, respectively. Strikingly, both mutations increased the number of newly forming, not-yet-enclosed discs, indicating that the precision of disc enclosure is regulated by PRPH2 oligomerization. Without tightly controlled enclosure, discs occasionally over-elongate and form large membranous "whorls" instead of disc stacks. These data show that the defects in outer segment structure arising from abnormal PRPH2 oligomerization are manifested at the stage of disc enclosure.SIGNIFICANCE STATEMENT The light-sensitive photoreceptor outer segment contains a stack of flattened "disc" membranes that are surrounded, or "enclosed," by the outer segment membrane. Disc enclosure is an adaptation increasing photoreceptor light sensitivity by facilitating the diffusion of the second messenger along the outer segment axes. However, the molecular mechanisms by which photoreceptor discs enclose within the outer segment membrane remain poorly understood. We now demonstrate that oligomers of the photoreceptor-specific protein peripherin-2, or PRPH2, play an active role in this process. We further propose that defects in disc enclosure because of abnormal PRPH2 oligomerization result in major structural abnormalities of the outer segment, ultimately leading to loss of visual function and cell degeneration in PRPH2 mutant models and human patients.


Assuntos
Periferinas/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Animais , Membrana Celular/genética , Membrana Celular/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Células Fotorreceptoras de Vertebrados/ultraestrutura , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Segmento Externo da Célula Bastonete/ultraestrutura
15.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526685

RESUMO

We previously reported a model of progressive retinal degeneration resulting from the knockout of the retina-specific riboflavin binding protein, retbindin (Rtbdn-/- ). We also demonstrated a reduction in neural retinal flavins as a result of the elimination of RTBDN. Given the role of flavins in metabolism, herein we investigated the underlying mechanism of this retinal degeneration by performing metabolomic analyses on predegeneration at postnatal day (P) 45 and at the onset of functional degeneration in the P120 retinas. Metabolomics of hydrophilic metabolites revealed that individual glycolytic products accumulated in the P45 Rtbdn-/- neural retinas along with the elevation of pentose phosphate pathway, while TCA cycle intermediates remained unchanged. This was confirmed by using 13C-labeled flux measurements and immunoblotting, revealing that the key regulatory step of phosphoenolpyruvate to pyruvate was inhibited via down-regulation of the tetrameric pyruvate kinase M2 (PKM2). Separate metabolite assessments revealed that almost all intermediates of acylcarnitine fatty acid oxidation, ceramides, sphingomyelins, and multiple toxic metabolites were significantly elevated in the predegeneration Rtbdn-/- neural retina. Our data show that lack of RTBDN, and hence reduction in flavins, forced the neural retina into repurposing glucose for free-radical mitigation over ATP production. However, such sustained metabolic reprogramming resulted in an eventual metabolic collapse leading to neurodegeneration.


Assuntos
Proteínas do Olho/genética , Piruvato Quinase/genética , Retina/metabolismo , Degeneração Retiniana/genética , Animais , Ciclo do Ácido Cítrico/genética , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Flavinas/metabolismo , Glicólise/genética , Homeostase , Humanos , Camundongos , Piruvato Quinase/metabolismo , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
16.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138244

RESUMO

The large number of inherited retinal disease genes (IRD), including the photopigment rhodopsin and the photoreceptor outer segment (OS) structural component peripherin 2 (PRPH2), has prompted interest in identifying common cellular mechanisms involved in degeneration. Although metabolic dysregulation has been shown to play an important role in the progression of the disease etiology, identifying a common regulator that can preserve the metabolic ecosystem is needed for future development of neuroprotective treatments. Here, we investigated whether retbindin (RTBDN), a rod-specific protein with riboflavin binding capability, and a regulator of riboflavin-derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is protective to the retina in different IRD models; one carrying the P23H mutation in rhodopsin (which causes retinitis pigmentosa) and one carrying the Y141C mutation in Prph2 (which causes a blended cone-rod dystrophy). RTBDN levels are significantly upregulated in both the rhodopsin (Rho)P23H/+ and Prph2Y141C/+ retinas. Rod and cone structural and functional degeneration worsened in models lacking RTBDN. In addition, removing Rtbdn worsened other phenotypes, such as fundus flecking. Retinal flavin levels were reduced in RhoP23H/+/Rtbdn-/- and Prph2Y141C/+/Rtbdn-/- retinas. Overall, these findings suggest that RTBDN may play a protective role during retinal degenerations that occur at varying rates and due to varying disease mechanisms.


Assuntos
Proteínas do Olho/fisiologia , Mutação , Periferinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/patologia , Degeneração Retiniana/patologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Periferinas/genética , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Proteínas rho de Ligação ao GTP/genética
17.
Front Cell Dev Biol ; 8: 861, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984341

RESUMO

Derivatives of the vitamin riboflavin, FAD and FMN, are essential cofactors in a multitude of bio-energetic reactions, indispensable for lipid metabolism and also are requisites in mitigating oxidative stress. Given that a balance between all these processes contributes to the maintenance of retinal homeostasis, effective regulation of riboflavin levels in the retina is paramount. However, various genetic and dietary factors have brought to fore pathological conditions that co-occur with a suboptimal level of flavins in the retina. Our focus in this review is to, comprehensively summarize all the possible metabolic and oxidative reactions which have been implicated in various retinal pathologies and to highlight the contribution flavins may have played in these. Recent research has found a sensitive method of measuring flavins in both diseased and healthy retina, presence of a novel flavin binding protein exclusively expressed in the retina, and the presence of flavin specific transporters in both the inner and outer blood-retina barriers. In light of these exciting findings, it is even more imperative to shift our focus on how the retina regulates its flavin homeostasis and what happens when this is disrupted.

18.
Front Cell Dev Biol ; 8: 743, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923439

RESUMO

Stem cells have been part of the biomedical landscape since the early 1960s. However, the translation of stem cells to effective therapeutics have met significant challenges, especially for retinal diseases. The retina is a delicate and complex architecture of interconnected cells that are steadfastly interdependent. Degenerative mechanisms caused by acquired or inherited diseases disrupt this interconnectivity, devastating the retina and causing severe vision loss in many patients. Consequently, retinal differentiation of exogenous and endogenous stem cells is currently being explored as replacement therapies in the debilitating diseases. In this review, we will examine the mechanisms involved in exogenous stem cells differentiation and the challenges of effective integration to the host retina. Furthermore, we will explore the current advancements in trans-differentiation of endogenous stem cells, primarily Müller glia.

19.
Proc Natl Acad Sci U S A ; 117(34): 20615-20624, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32778589

RESUMO

Trafficking of photoreceptor membrane proteins from their site of synthesis in the inner segment (IS) to the outer segment (OS) is critical for photoreceptor function and vision. Here we evaluate the role of syntaxin 3 (STX3), in trafficking of OS membrane proteins such as peripherin 2 (PRPH2) and rhodopsin. Photoreceptor-specific Stx3 knockouts [Stx3f/f(iCre75) and Stx3f/f(CRX-Cre) ] exhibited rapid, early-onset photoreceptor degeneration and functional decline characterized by structural defects in IS, OS, and synaptic terminals. Critically, in the absence of STX3, OS proteins such as PRPH2, the PRPH2 binding partner, rod outer segment membrane protein 1 (ROM1), and rhodopsin were mislocalized along the microtubules to the IS, cell body, and synaptic region. We find that the PRPH2 C-terminal domain interacts with STX3 as well as other photoreceptor SNAREs, and our findings indicate that STX3 is an essential part of the trafficking pathway for both disc (rhodopsin) and rim (PRPH2/ROM1) components of the OS.


Assuntos
Periferinas/metabolismo , Proteínas Qa-SNARE/metabolismo , Segmento Interno das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Rodopsina/metabolismo , Animais , Técnicas de Silenciamento de Genes , Camundongos , Células Fotorreceptoras de Vertebrados/fisiologia , Transporte Proteico , Proteínas Qa-SNARE/genética , Segmento Interno das Células Fotorreceptoras da Retina/ultraestrutura , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Proteínas SNARE/metabolismo
20.
Hum Mol Genet ; 29(16): 2708-2722, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32716032

RESUMO

Peripherin 2 (PRPH2) is a retina-specific tetraspanin protein essential for the formation of rod and cone photoreceptor outer segments (OS). Patients with mutations in PRPH2 exhibit severe retinal degeneration characterized by vast inter- and intra-familial phenotypic heterogeneity. To help understand contributors to this within-mutation disease variability, we asked whether the PRPH2 binding partner rod OS membrane protein 1 (ROM1) could serve as a phenotypic modifier. We utilized knockin and transgenic mouse models to evaluate the structural, functional and biochemical effects of eliminating one allele of Rom1 (Rom1+/-) in three different Prph2 models which mimic human disease: C213Y Prph2 (Prph2C/+), K153Del Prph2 (Prph2K/+) and R172W (Prph2R172W). Reducing Rom1 in the absence of Prph2 mutations (Rom1+/-) had no effect on retinal structure or function. However, the effects of reducing Rom1 in the presence of Prph2 mutations were highly variable. Prph2K/+/Rom1+/- mice had improved rod and cone function compared with Prph2K/+ as well as amelioration of K153Del-associated defects in PRPH2/ROM1 oligomerization. In contrast, Prph2R172W/Rom1+/- animals had worsened rod and cone function and exacerbated retinal degeneration compared with Prph2R172W animals. Removing one allele of Rom1 had no effect in Prph2C/+. Combined, our findings support a role for non-pathogenic ROM1 null variants in contributing to phenotypic variability in mutant PRPH2-associated retinal degeneration. Since the effects of Rom1 reduction are variable, our data suggest that this contribution is specific to the type of Prph2 mutation.


Assuntos
Proteínas do Olho/genética , Periferinas/genética , Degeneração Retiniana/genética , Tetraspaninas/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Mutação/genética , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA