Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(15): 10258-10265, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29594276

RESUMO

Understanding the nature of interfacial defects of materials is a critical undertaking for the design of high-performance hybrid electrodes for photocatalysis applications. Theoretical and computational endeavors to achieve this have touched boundaries far ahead of their experimental counterparts. However, to achieve any industrial benefit out of such studies, experimental validation needs to be systematically undertaken. In this sense, we present herein experimental insights into the synergistic relationship between the lattice position and oxidation state of tungsten ions inside a TiO2 lattice, and the respective nature of the created defect states. Consequently, a roadmap to tune the defect states in anodically-fabricated, ultrathin-walled W-doped TiO2 nanotubes is proposed. Annealing the nanotubes in different gas streams enabled the engineering of defects in such structures, as confirmed by XRD and XPS measurements. While annealing under hydrogen stream resulted in the formation of abundant Wn+ (n < 6) ions at the interstitial sites of the TiO2 lattice, oxygen- and air-annealing induced W6+ ions at substitutional sites. EIS and Mott-Schottky analyses indicated the formation of deep-natured trap states in the hydrogen-annealed samples, and predominantly shallow donating defect states in the oxygen- and air-annealed samples. Consequently, the photocatalytic performance of the latter was significantly higher than those of the hydrogen-annealed counterparts. Upon increasing the W content, photoelectrochemical performance deteriorated due to the formation of WO3 crystallites that hindered charge transfer through the photoanode, as evident from the structural and chemical characterization. To this end, this study validates the previous theoretical predictions on the detrimental effect of interstitial W ions. In addition, it sheds light on the importance of defect states and their nature for tuning the photoelectrochemical performance of the investigated materials.

2.
RSC Adv ; 8(35): 19499-19511, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35540972

RESUMO

Copper oxide (CuO) nanoparticles have received considerable interest as active and inexpensive catalysts for various gas-solid reactions. The CuO reducibility and surface reactivity are of crucial importance for the high catalytic activity. Herein, we demonstrate that the reducibility and stability of CuO nanoparticles can be controlled and tailored for the high catalytic activity of CO oxidation. The synthesized CuO nanoparticles possessed enhanced reducibility in CO atmosphere at lower reduction temperature of 126 °C compared to 284 °C for that of reference CuO particles. Moreover, the CuO catalysts with tailored reducibility demonstrated a reaction rate of 35 µmol s-1 g-1 and an apparent activation energy of 75 kJ mol-1. Furthermore, the tailored catalysts exhibited excellent long-term stability for CO oxidation for up to 48 h on stream. These readily-reducible CuO nanoparticles could serve as efficient, inexpensive and durable catalysts for CO oxidation at low temperatures.

3.
Nanoscale ; 9(47): 18881-18889, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29177288

RESUMO

Precise fabrication of porous ternary Pt-based nanodendrites is very important for electrochemical energy conversion owing to high surface area and great molecular accessibility of these nanodendrites. Herein, PtPdRu porous nanodendrites (PNDs) were prepared via a facile one-step ultrasonic irradiation approach at room temperature. Intriguingly, the ultrasonic irradiation drove the formation of PtPdRu PNDs with spatially interconnected porous structures, whereas magnetic stirring produced PtPdRu nanoflowers (NFs) with less porosity. The formation mechanism was ascribed to the acoustic cavitation effect and fast-reduction kinetics under sonication. The as-made PtPdRu PNDs displayed a superior catalytic performance towards ethanol oxidation reaction with a high tolerance for CO-poisoning as compared to PtPdRu NFs, PtPd NDs, and commercial Pt/C catalyst.

4.
Sci Rep ; 7(1): 9898, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851975

RESUMO

Nanocomposites (CNTi) with different mass ratios of carbon nitride (C3N4) and TiO2 nanoparticles were prepared hydrothermally. Different characterization techniques were used including X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), transmission electron spectroscopy (TEM) and Brunauer-Emmett-Teller (BET). UV-Vis DRS demonstrated that the CNTi nanocomposites exhibited absorption in the visible light range. A sun light - simulated photoexcitation source was used to study the kinetics of phenol degradation and its intermediates in presence of the as-prepared nanocomposite photocatalysts. These results were compared with studies when TiO2 nanoparticles were used in the presence and absence of H2O2 and/or O3. The photodegradation of phenol was evaluated spectrophotometrically and using the total organic carbon (TOC) measurements. It was observed that the photocatalytic activity of the CNTi nanocomposites was significantly higher than that of TiO2 nanoparticles. Additionally, spectrophotometry and TOC analyses confirmed that degraded phenol was completely mineralized to CO2 and H2O with the use of CNTi nanocomposites, which was not the case for TiO2 where several intermediates were formed. Furthermore, when H2O2 and O3 were simultaneously present, the 0.1% g-C3N4/TiO2 nanocomposite showed the highest phenol degradation rate and the degradation percentage was greater than 91.4% within 30 min.

5.
Sci Rep ; 7(1): 1913, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28507303

RESUMO

We demonstrate, for the first time, the synthesis of highly ordered titanium oxynitride nanotube arrays sensitized with Ag nanoparticles (Ag/TiON) as an attractive class of materials for visible-light-driven water splitting. The nanostructure topology of TiO2, TiON and Ag/TiON was investigated using FESEM and TEM. The X-ray photoelectron spectroscopy (XPS) and the energy dispersive X-ray spectroscopy (EDS) analyses confirm the formation of the oxynitride structure. Upon their use to split water photoelectrochemically under AM 1.5 G illumination (100 mW/cm2, 0.1 M KOH), the titanium oxynitride nanotube array films showed significant increase in the photocurrent (6 mA/cm2) compared to the TiO2 nanotubes counterpart (0.15 mA/cm2). Moreover, decorating the TiON nanotubes with Ag nanoparticles (13 ± 2 nm in size) resulted in exceptionally high photocurrent reaching 14 mA/cm2 at 1.0 VSCE. This enhancement in the photocurrent is related to the synergistic effects of Ag decoration, nitrogen doping, and the unique structural properties of the fabricated nanotube arrays.

6.
Phys Chem Chem Phys ; 18(32): 22217-23, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27453354

RESUMO

An electrochemical method is presented to study the nature of the defect states in sub-stoichiometric tungsten oxide nanoflake photoanodes used in water splitting. First, stoichiometric/sub-stoichiometric tungstate nanoflake arrays were deliberately developed via annealing under different atmospheres (air, O2, and H2) in different sequences. UV-Vis diffuse reflectance spectra and Tauc analysis indicated the presence of oxygen vacancies, which was also confirmed via XRD and Raman analysis, with samples annealed in an air/O2 sequence resulting in the most stoichiometric monoclinic structures. A defect sensitivity factor was proposed to explain the nature of defects whether they are deep or shallow. Mott-Schottky analysis was used to confirm the expected defect donor densities, as well as to confirm the nature of the developed oxygen vacancy defect states. The tungstate photoanodes were tested in photoelectrochemical water splitting cells and their photoconversion efficiency was demonstrated and discussed in detail.

7.
ACS Nano ; 9(11): 11317-24, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26422642

RESUMO

We report supramolecular cross-linking of polymer binders via dynamic host-guest interactions between hyperbranched ß-cyclodextrin polymer and a dendritic gallic acid cross-linker incorporating six adamantane units for high-capacity silicon anodes. Calorimetric analysis in the solution phase indicates that the given host-guest complexation is a highly spontaneous and enthalpically driven process. These findings are further verified by carrying out gelation experiments in both aqueous and organic media. The dynamic cross-linking process enables intimate silicon-binder interaction, structural stability of electrode film, and controlled electrode-electrolyte interface, yielding enhanced cycling performance. Control experiments using both α, γ-CDp with different cavity sizes and a guest molecule incorporating a single adamantane unit verified that the enhanced cycle life originates from the host-guest interaction between ß-cyclodextrin and adamantane. The impact of the dynamic cross-linking is maximized at an optimal stoichiometry between the two components. Importantly, the present investigation proves that the molecular-level tuning of the host-guest interactions can be translated directly to the cycling performance of silicon anodes.

8.
Chem Commun (Camb) ; 51(63): 12617-20, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26158790

RESUMO

We demonstrate, for the first time, the synthesis of titania nanotubes with ultrathin (3-5 nm) wall thickness. As revealed by the incident photon-to-current collection efficiency (IPCE) and electrochemical impedance spectroscopy measurements, the ultrathin walls, less than the charge carrier diffusion length, were essential to ensure fast and efficient charge carrier collection.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 135: 498-505, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25123938

RESUMO

The solid charge-transfer (CT) molecular complexes formed in the reaction of the electron donor 4-methylpiperidine (4MP) with the σ-electron acceptor iodine and π-acceptors 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD) have been investigated spectrophotometrically in chloroform at 25 °C. These were characterized through electronic and infrared spectra as well as elemental and thermal analysis. The obtained results showed that the formed solid CT-complexes have the formulas [(4MP) I](+)I(-)3, [(4MP)(DDQ)2] and [(4MP)(TBCHD)] and with TCNQ the adduct [TCMPQDM] is obtained through N-substitution reaction in full agreement with the known reaction stoichiometries in solution as well as the elemental measurements. The formation constant KCT, molar extinction coefficient εCT, free energy change ΔG(0), CT energy ECT and the ionization potential Ip have been calculated for the CT-complexes [(4MP) I](+)I(-)3, [(4MP)(DDQ)2] and [(4MP)(TBCHD)].


Assuntos
Elétrons , Piperidinas/química , Absorção Fisico-Química , Benzoquinonas/química , Nitrilas/química , Solventes/química , Espectrofotometria Infravermelho , Termodinâmica , Titulometria
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 118: 1012-9, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24184582

RESUMO

The spectroscopic characteristics of the solid charge-transfer molecular complexes (CT) formed in the reaction of the electron donor 4-(aminomethyl) piperidine (4AMP) with the σ-acceptor iodine and the π-acceptors 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) have been studied in chloroform at 25°C. These were investigated through electronic, infrared spectra and thermal analysis as well as elemental analysis. The results show that the formed solid CT-complexes have the formulas [(4AMP)I](+)I3(-), [(4AMP)(DDQ)2] and [(4AMP)(TBCHD)] while in the case of 4AMP-TCNQ reaction, a short-lived CT complex is formed followed by rapid N-substitution by TCNQ forming the final reaction product 7,7,8-tricyano-8-aminomethylpiperidinylquinodimethane [TCAMPQDM] in full agreement with the known reaction stoichiometries in solution as well as the elemental measurements and the thermal analysis confirmed the structure of the obtained compounds. The formation constant kCT, molar extinction coefficient εCT, free energy change ΔG(0) and CT energy ECT have been calculated for the CT-complexes [(4AMP)I](+)I3(-), [(4AMP)(DDQ)2] and [(4AMP)(TBCHD)].


Assuntos
Piperidinas/química , Aminas/química , Benzoquinonas/química , Cicloexenos/química , Elétrons , Iodo/química , Metilação , Nitrilas/química , Espectrofotometria , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 71(4): 1594-8, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18691934

RESUMO

The solid charge-transfer complexes formed in the reaction of the electron donor 1,4,7-trimethyl-1,4,7-triazacyclononane (TMTACN) with the acceptors iodine, tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) have been isolated. These were characterized through electronic and infrared spectra as well as thermal and elemental analysis. The results show that the formed solid CT-complexes have the formulas [(TMTACN)I]I3, [(TMTACN)(TCNE)5] and [(TMTACN)(TCNQ)3] in full agreement with the known reaction stoichiometries in solution. The chloranil CT-solid complex cannot be isolated in pure form.


Assuntos
Compostos Aza/química , Cloranila/química , Etilenos/química , Iodo/química , Nitrilas/química , Espectrofotometria/métodos , Luz , Modelos Químicos , Nitrogênio/química , Fotoquímica/métodos , Espectrofotometria Infravermelho/métodos , Temperatura
12.
Artigo em Inglês | MEDLINE | ID: mdl-17307029

RESUMO

The interaction of the interesting polynitrogen cyclic base 1,4,7-trimethyl-1,4,7-triazacyclononane (TMTACN) with the sigma-acceptor iodine and pi-acceptors tetracyanoethylene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and tetrachloro-p-benzoquinone (chloranil) have been studied spectrophotometrically and cyclic voltametrically in chloroform at 20 degrees C. Based on the obtained data, the formed charge-transfer complexes were formulated as [(TMTACN)I](+).I(3)(-), [(TMTACN)(TCNE)(5)], [(TMTACN)(TCNQ)(3)] and [(TMTACN)(chloranil)(3)] where the stoichiometry of the reactions, donor:acceptor molar ratios, were shown to equal 1:2 for iodine complex, 1:3 for chloranil and TCNQ complexes and 1:5 for TCNE complex.


Assuntos
Compostos Aza/química , Cloranila/química , Etilenos/química , Iodo/química , Nitrilas/química , Clorofórmio/química , Oxirredução , Fotometria , Análise Espectral , Titulometria
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 62(1-3): 578-81, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16099705

RESUMO

The charge-transfer (CT) interaction of the electron donor phenacetin (phen) and the pi-electron acceptor tetracyanoethylene (TCNE) has been studied in CH(2)Cl(2). The results obtained indicate the formation of the novel CT-complex with the general formula [(phen)(TCNE)(12)]. The 1:12 stoichiometry of the reaction was based on photometric titration, elemental analysis, infrared, thermal and cyclic voltametry measurements of the formed CT-complex.


Assuntos
Etilenos/química , Nitrilas/química , Fenacetina/química , Fenóis/química , Eletroquímica , Potenciometria , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA