Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(5): 231374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39100625

RESUMO

A prevalent class of challenges in modern physics are inverse problems, where physical quantities must be extracted from experimental measurements. End-to-end machine learning approaches to inverse problems typically require constructing sophisticated estimators to achieve the desired accuracy, largely because they need to learn the complex underlying physical model. Here, we discuss an alternative paradigm: by making the physical model auto-differentiable we can construct a neural surrogate to represent the unknown physical quantity sought, while avoiding having to relearn the known physics entirely. We dub this process surrogate training embedded in physics (STEP) and illustrate that it generalizes well and is robust against overfitting and significant noise in the data. We demonstrate how STEP can be applied to perform dynamic kernel deconvolution to analyse resonant inelastic X-ray scattering spectra and show that surprisingly simple estimator architectures suffice to extract the relevant physical information.

2.
Sci Rep ; 14(1): 7267, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538610

RESUMO

X-ray free-electron lasers are sources of coherent, high-intensity X-rays with numerous applications in ultra-fast measurements and dynamic structural imaging. Due to the stochastic nature of the self-amplified spontaneous emission process and the difficulty in controlling injection of electrons, output pulses exhibit significant noise and limited temporal coherence. Standard measurement techniques used for characterizing two-coloured X-ray pulses are challenging, as they are either invasive or diagnostically expensive. In this work, we employ machine learning methods such as neural networks and decision trees to predict the central photon energies of pairs of attosecond fundamental and second harmonic pulses using parameters that are easily recorded at the high-repetition rate of a single shot. Using real experimental data, we apply a detailed feature analysis on the input parameters while optimizing the training time of the machine learning methods. Our predictive models are able to make predictions of central photon energy for one of the pulses without measuring the other pulse, thereby leveraging the use of the spectrometer without having to extend its detection window. We anticipate applications in X-ray spectroscopy using XFELs, such as in time-resolved X-ray absorption and photoemission spectroscopy, where improved measurement of input spectra will lead to better experimental outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA