Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1355941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711603

RESUMO

Detecting plant leaf diseases accurately and promptly is essential for reducing economic consequences and maximizing crop yield. However, farmers' dependence on conventional manual techniques presents a difficulty in accurately pinpointing particular diseases. This research investigates the utilization of the YOLOv4 algorithm for detecting and identifying plant leaf diseases. This study uses the comprehensive Plant Village Dataset, which includes over fifty thousand photos of healthy and diseased plant leaves from fourteen different species, to develop advanced disease prediction systems in agriculture. Data augmentation techniques including histogram equalization and horizontal flip were used to improve the dataset and strengthen the model's resilience. A comprehensive assessment of the YOLOv4 algorithm was conducted, which involved comparing its performance with established target identification methods including Densenet, Alexanet, and neural networks. When YOLOv4 was used on the Plant Village dataset, it achieved an impressive accuracy of 99.99%. The evaluation criteria, including accuracy, precision, recall, and f1-score, consistently showed high performance with a value of 0.99, confirming the effectiveness of the proposed methodology. This study's results demonstrate substantial advancements in plant disease detection and underscore the capabilities of YOLOv4 as a sophisticated tool for accurate disease prediction. These developments have significant significance for everyone involved in agriculture, researchers, and farmers, providing improved capacities for disease control and crop protection.

2.
PLoS One ; 19(1): e0293369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165986

RESUMO

The organic composition of Arabica coffee beans, particularly fatty acids, significantly influences their overall quality. After measuring its composition of fatty acids, it contained a high percentage of saturated fatty acids (SFA), including caprylic, lauric, myristic, palmitic, margaric, fat, and orchid. Moreover, the sample contained unsaturated fatty acids (USFA), namely palmitoleic acid (C16:1), oleic acid (C18:1), linoleic acid (C18:2), and alpha-linoleic acid (C18:3). Coffee beans are susceptible to infection by fungi during storage, the development of which has adverse effects on the beans. The present study aimed to examine the impact of Aspergillus niger MH078571.1 infection on the diversity and abundance of fatty acids in green Arabica coffee beans. The impact of Aspergillus niger on the consumption of fatty acids in Arabica coffee beans was assessed. The findings of the study indicate that the duration of storage had a significant impact on the levels of fatty acids, specifically miristic (C14:0), margaric (C17:0), and stearic (C18:0), which increased as the storage period and temperature increased. Conversely, the percentage of oleic acid decreased under these conditions. This trend was observed across different storage temperatures (0, 8, and 25°C) in untreated coffee beans affected by fungal activity.


Assuntos
Coffea , Ácidos Graxos , Ácidos Graxos/análise , Aspergillus niger , Cromatografia Gasosa-Espectrometria de Massas , Coffea/química , Ácido Oleico , Ácido Linoleico
3.
Sci Rep ; 13(1): 11723, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474592

RESUMO

Forty-six promising chitinolytic isolates were recovered during a screening for chitinolytic bacteria in the environment of Saudi Arabia. The top three isolates belonged to the genus Streptomyces. Streptomyces variabilis Am1 was able to excrete the highest amount of chitinases, reaching the maximum at 84 h with 0.5% yeast extract and nitrogen source and 2% galactose as a carbon source. Purification of chitinase by DEAE-Cellulose and Sephadex G75 improved the specific activity to 18.6-fold and the recovery to 23.8% and showed a mass at 56 kDa. The optimal catalysis of the purified chitinase was at 40 °C and pH 8 with high thermostability and pH stability as reflected by a midpoint temperature value of 66.6 °C and stability at pH 4-9. The protein reagents SDS, EDTA, and EGTA significantly inhibited the enzyme and the EDTA-chelated chitinase restored its activity after the addition of Fe2+ ions suggesting a metallo-chitinase type with ferric ions as cofactors. Chitinase exerted high antifungal activity against some phytopathogenic fungi. Interestingly, the tested Streptomyces were able to produce chitosan nanocubes along with chitosan from chitin degradation which may be an additional power in their antifungal activity in nature. This work also reveals the importance of unexplored environments as a pool of promising microorganisms with biotechnological applications.


Assuntos
Quitinases , Quitosana , Streptomyces , Antifúngicos/química , Quitina/metabolismo , Quitinases/metabolismo , Arábia Saudita , Ácido Edético/farmacologia , Streptomyces/metabolismo , Temperatura , Íons , Concentração de Íons de Hidrogênio
4.
PLoS One ; 18(3): e0282963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36913358

RESUMO

Ninety-one elastase-producing bacterial isolates were recovered from different localities of the Eastern Province of Saudi Arabia. Elastase from the best isolate Priestia megaterium gasm32, from luncheon samples was purified to electrophoretic homogeneity using DEAE-Sepharose CL-6B and Sephadex G-100 chromatographic techniques. The recovery was 17.7%, the purification fold was 11.7x, and the molecular mass was 30 kDa. Enzymatic activity was highly repressed by Ba2+ and almost completely lost by EDTA, but it was greatly stimulated by Cu2+ ions, suggesting a metalloprotease type. The enzyme was stable at 45°C and pH 6.0-10.0 for 2 hours. Ca2+ ions considerably enhanced the stability of the heat-treated enzyme. The Vmax and Km against the synthetic substrate elastin-Congo red were 6.03 mg/mL, and 8.82 U/mg, respectively. Interestingly, the enzyme showed potent antibacterial activity against many bacterial pathogens. Under SEM, most bacterial cells showed loss of integrity, damage, and perforation. SEM micrographs also showed a time-dependent gradual breakdown of elastin fibers exposed to elastase. After 3 hours, intact elastin fibers disappeared, leaving irregular pieces. Given these good features, this elastase may be a promising candidate for treating damaged skin fibers with the inhibition of contaminating bacteria.


Assuntos
Elastina , Elastase Pancreática , Elastase Pancreática/metabolismo , Elastina/metabolismo , Bactérias/metabolismo , Arábia Saudita , Concentração de Íons de Hidrogênio
5.
Sci Rep ; 12(1): 2940, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190624

RESUMO

2,6-Dichlorophenol (2,6-DCP) is an aromatic compound with industrial importance in making insecticides, herbicides, and other organic compounds. However, it poses serious health and ecological problems. Microbial degradation of 2,6-DCP has been widely applied due to its effectiveness and eco-friendly characteristics. In this study, Trichoderma longibraciatum was isolated from an industrial soil sample in Dammam, Saudi Arabia using the enrichment method of mineral salt's medium (MSM) amended with 2,6-DCP. Morphological and molecular identification (using the internal transcribed spacer rRNA gene sequencing) of the 2,6-DCP tolerating fungal isolate were charactraized. The fungal isolate has demonstrated a tolerance to 2,6-DCP up to 300 mg/L. Mycelial growth and fungal sporulation were reduced with increasing 2,6-DCP concentrations up to 96 h incubation period. However, after 168 h incubation period, the fungal isolate recorded maximum growth at all the tested 2,6-DCP concentrations up to 150 mg/L. Carboxy methyl cellulase production by tested fungus was decreased by increasing 2,6-DCP concentration up to 75 mg/L. The biodegradation pattern of 2,6-DCP in GM liquid medium using GC-mass analysis as well as the degradation pathway was presented. This study provides a promising fungal isolate that could be used in the bioremediation process for chlorinated phenols in soil.

6.
PeerJ ; 6: e6086, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30588401

RESUMO

BACKGROUND: Green synthesis of metallic nanoparticles has gained significant attention in the field of nanomedicine as an environment-friendly and cost-effective alternative in comparison with other physical and chemical methods. Several metals such as silver, gold, iron, titanium, zinc, magnesium and copper have been subjected to nanoformulation for a wide range of useful applications. Silver nanoparticles (AgNPs) are playing a major role in the field of nanomedicine and nanotechnology. They are widely used in diagnostics, therapeutic and pharmaceutical industries. Studies have shown potential inhibitory antimicrobial, anti-inflammatory and antiangiogenesis activities of AgNPs. METHODS: AgNPs have been synthesized using silver nitrate and methanolic root extract of Rhazya stricta that belongs to the Apocynaceae family. Stability and dispersion of nanoparticles were improved by adding xylitol. Synthesized nanoparticles were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometer and Fourier transforms infrared spectroscopy. Furthermore, the antibacterial effect of the plant extract and the nanoparticles were evaluated against gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacteria. RESULTS: The average size of AgNPs synthesized, was 20 nm with the spherical shape. Rhazya stricta based nanoparticles exhibited improved antibacterial activity against both gram-positive and negative strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA