Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 106(9): 2380-2391, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35188414

RESUMO

The production of common bean (Phaseolus vulgaris L.) is adversely affected by virus-like diseases globally, but little is known about the occurrence, distribution, and diversity of common bean-infecting viruses in Zambia. Consequently, field surveys were conducted during the 2018 season in 128 fields across six provinces of Zambia and 640 common bean leaf tissue samples were collected with (n = 585) or without (n = 55) symptoms. The prevalence of symptomatic fields was 100%, but incidence of symptomatic plants ranged from 32 to 67.5%. Metagenomic analyses of nine composite samples and a single plant sample of interest revealed the occurrence of isolates of Bean common mosaic necrosis virus, Bean common mosaic virus, Cowpea aphid-borne mosaic virus, Peanut mottle virus, Southern bean mosaic virus (SBMV), Cucumber mosaic virus, Phaseolus vulgaris alphaendornavirus 1 (PvEV-1), PvEV-2, Ethiopian tobacco bushy top virus (ETBTV), and a novel strain of Cowpea polerovirus 1 (CPPV1-Pv) of 5,902 nt in length. While CPPV1-Pv was consistently detected in mixed infection with ETBTV and its satellite RNA molecule, based on results of mechanical transmission assays it does not appear to be involved in disease etiology, suggesting that its role may be limited to being a helper virus for the umbravirus. Screening of the survey samples by real-time PCR for the viruses detected by high-throughput sequencing revealed the prevalence of single (65.2% or 417/640) over mixed (1.9% or 12/640) infections in the samples. SBMV was the most frequently detected virus, occurring in ∼29.4% (188/640) of the samples and at a prevalence rate of 58.6% (75/128) across fields. The results showed that diverse virus species are present in Zambian common bean fields and the information will be useful for the management of common bean viral diseases.


Assuntos
Luteoviridae , Phaseolus , Vigna , Luteoviridae/genética , Doenças das Plantas , Vírus de Plantas , Zâmbia
2.
Plant Dis ; 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904335

RESUMO

Banana (including plantain; Musa spp.) is a vegetatively propagated semi-perennial crop in fields and backyard gardens in Togo. Banana bunchy top disease (BBTD), caused by banana bunchy top virus (BBTV, genus Babuvirus) is the most economically important viral disease, infection of which causes severe stunting and production losses of 90-100% within two seasons. The virus is spread by banana aphid, Pentalonia nigronervosa, and through vegetative propagation from infected sources. BBTV occurrence was first reported in West Africa in 2011 with confirmation in Republic of Benin and in Nigeria in 2012 . A regional alliance (www.bbtvalliance.org) has been established for BBTV surveillance through frequent surveys in countries neighboring those affected, such as Togo. The surveys conducted in September 2018 in banana growing areas in Togo revealed plants with typical symptoms (severe stunting, bunchy growth with shortened petioles with chlorotic streaks and yellow leaf margins) in three banana fields. Locations were Tsévié, Préfecture de Zio, (6.44°N, 1.21028°E), Lilicope, Préfecture de Zio in Maritime region (6.56583°N, 1.18639°E), and Amoutchou, Préfecture de l'Ogou in Plateaux region (7.3775°N, 1.17472°E). Leaf samples were collected from symptomatic (N=8) and asymptomatic plants (N=30) and used for DNA extraction followed by a polymerase chain reaction (PCR) for BBTV detection to amplify ~240 bp sequence of DNA-R encoding for core replicase gene. All samples from symptomatic plants (N=8) tested positive and asymptomatic plants were negative. To ascertain virus identity the 240-bp PCR product was purified and sequenced in both directions. A BLAST search of the sequence (NCBI GenBank Acc.# MK073116) revealed 99% identity with DNA-R sequences of BBTV isolates from Africa (e.g., JQ437549-Benin, JN290301-Nigeria). Further analysis of the 240-bp nucleotide sequence with Maximum-likelihood phylogenetic analysis using MEGA-X software has grouped the BBTV isolate with sub-Saharan African sub-clade of the South Pacific group. To further confirm the virus identity, two samples from symptomatic (PCR positive) and asymptomatic (PCR negative) plants from Tsévié were tested by TAS-ELISA using BBTV ELISA reagent set (Cat. No. SRA24700-1000, Agdia, France) following the manufacturers' protocol. Only samples from two symptomatic plants that were positive in PCR reacted positively in TAS-ELISA; asymptomatic plants were negative. BBTV was not observed in any of the 22 locations surveyed as a follow-up in banana producing areas. To our knowledge, this is the first report of BBTV infecting banana in Togo. The plants detected in the three sites were eradicated in the follow-up action implemented by the alliance team together with the Direction de la Protection des Végétaux of Togo. Follow-up surveys were conducted in the same regions in 2019 and 2020 to ensure disease-free status in these sites and other banana producing regions in Togo. Efforts have been made to raise awareness about BBTD recognition, diagnosis, and eradication. To the best of our knowledge this is the first case of rapid detection and eradication of BBTD in sub-Saharan Africa. This study illustrates the importance of regular surveillance for early detection of invasive virus threats and the value of rapid eradication to contain viruses before spread and establishment in a new territory.

3.
F1000Res ; 5: 885, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303632

RESUMO

Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes.

4.
J Appl Physiol (1985) ; 119(1): 55-60, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25977450

RESUMO

The doubly labeled water (DLW) method is used to measure free-living energy expenditure in humans. Inherent to this technique is the assumption that natural abundances of stable isotopes (2)H and (18)O in body water remain constant over the course of the measurement period and after elimination of the loading dose of DLW will return to the same predose level. To determine variability in the natural abundances of (2)H and (18)O in humans living in a region with seasonal shifts in rain patterns and sources of drinking water, over the course of 12 mo we collected weekly urine samples from four individuals living in southwest Nigeria as well as samples of their drinking water. From ongoing regional studies of hypertension, obesity, and energy expenditure, we estimated average water turnover rate, urine volumes, and sodium and potassium excretion. Results suggest that (2)H and (18)O in urine, mean concentrations of urinary sodium and potassium, urine volume, and total body turnover differed significantly from dry to rainy season. Additionally, seasonal weather variables (mean monthly maximum temperatures, total monthly rainfall, and minimum relative humidity) were all significantly associated with natural abundances in urine. No seasonal difference was observed in drinking water samples. Findings suggest that natural abundances in urine may not remain constant as assumed, and studies incorporating DLW measurements across the transition of seasons should interpret results with caution unless appropriate doses of the tracers are used.


Assuntos
Deutério/urina , Isótopos de Oxigênio/urina , Estações do Ano , Água Corporal/metabolismo , Clima , Água Potável/análise , Metabolismo Energético/fisiologia , Feminino , Humanos , Marcação por Isótopo , Masculino , Pessoa de Meia-Idade , Nigéria , Potássio/urina , Chuva , População Rural , Sódio/urina , Urodinâmica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA