Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1190105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389344

RESUMO

The research aimed to explore the potential probiotic characteristics of Levilactobacillus brevis RAMULAB49, a strain of lactic acid bacteria (LAB) isolated from fermented pineapple, specifically focusing on its antidiabetic effects. The importance of probiotics in maintaining a balanced gut microbiota and supporting human physiology and metabolism motivated this research. All collected isolates underwent microscopic and biochemical screenings, and those exhibiting Gram-positive characteristics, negative catalase activity, phenol tolerance, gastrointestinal conditions, and adhesion capabilities were selected. Antibiotic susceptibility was assessed, along with safety evaluations encompassing hemolytic and DNase enzyme activity tests. The isolate's antioxidant activity and its ability to inhibit carbohydrate hydrolyzing enzymes were examined. Additionally, organic acid profiling (LC-MS) and in silico studies were conducted on the tested extracts. Levilactobacillus brevis RAMULAB49 demonstrated desired characteristics such as Gram-positive, negative catalase activity, phenol tolerance, gastrointestinal conditions, hydrophobicity (65.71%), and autoaggregation (77.76%). Coaggregation activity against Micrococcus luteus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was observed. Molecular characterization revealed significant antioxidant activity in Levilactobacillus brevis RAMULAB49, with ABTS and DPPH inhibition rates of 74.85% and 60.51%, respectively, at a bacterial cell concentration of 109 CFU/mL. The cell-free supernatant exhibited substantial inhibition of α-amylase (56.19%) and α-glucosidase (55.69%) in vitro. In silico studies supported these findings, highlighting the inhibitory effects of specific organic acids such as citric acid, hydroxycitric acid, and malic acid, which displayed higher Pa values compared to other compounds. These outcomes underscore the promising antidiabetic potential of Levilactobacillus brevis RAMULAB49, isolated from fermented pineapple. Its probiotic properties, including antimicrobial activity, autoaggregation, and gastrointestinal conditions, contribute to its potential therapeutic application. The inhibitory effects on α-amylase and α-glucosidase activities further support its anti-diabetic properties. In silico analysis identified specific organic acids that may contribute to the observed antidiabetic effects. Levilactobacillus brevis RAMULAB49, as a probiotic isolate derived from fermented pineapple, holds promise as an agent for managing diabetes. Further investigations should focus on evaluating its efficacy and safety in vivo to consider its potential therapeutic application in diabetes management.

2.
J Biomol Struct Dyn ; : 1-11, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254309

RESUMO

Proto-oncogene tyrosine-protein kinase ROS (ROS1) is a member of the sevenless receptor, which affects epithelial cell differentiation and is highly expressed in a variety of tumor cells. The elevated expression and dysfunction of ROS1 have been involved in various malignancies, such as non-small cell lung cancer (NSCLC), stomach cancer, ovarian, breast cancer, cholangiocarcinoma, colorectal cancer, adenosarcoma, oesophageal cancer, etc. ROS1 has been postulated as a potential drug target in anticancer therapeutics. In this study, we carried out a virtual screening of phytochemicals against ROS1 to identify its potential inhibitors. The virtual screening process was performed on the ROS1 structure, where two phytochemicals, Helioscopinolide C and Taiwanin C, were identified. These compounds resulted from filters like Lipinski rule of five, PAINS filter, binding affinities values, and all-atom molecular dynamics (MD) simulations followed by principal component analysis (PCA) and essential dynamics. The findings of this study highlight the role of ROS1 in multiple physiological candidates and its therapeutic targeting using phytochemicals. This study suggests Helioscopinolide C and Taiwanin C as potential compounds for therapeutic development targeting ROS1-associated non-small cell lung cancer for clinical applications. Further in vitro and in vivo experiments are required to validate these findings.Communicated by Ramaswamy H. Sarma.

3.
Nanomaterials (Basel) ; 13(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049295

RESUMO

BACKGROUND: Cancer is a chronic, heterogeneous illness that progresses through a spectrum of devastating clinical manifestations and remains the 2nd leading contributor to global mortality. Current cancer therapeutics display various drawbacks that result in inefficient management. The present study is intended to evaluate the anticancer potential of Cu-Mn bimetallic NPs (CMBNPs) synthesized from pumpkin seed extract against colon adenocarcinoma cancer cell line (HT-29). METHODS: The CMBNPs were biosynthesized by continuously stirring an aqueous solution of pumpkin seed extract with CuSO4 and manganese (II) acetate tetrahydrate until a dark green solution was obtained. The characteristic features of biogenic CMBNPs were assessed by UV-visible spectrophotometry (UV-vis), X-ray powder diffraction (XRD), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A battery of biological assays, viz. neutral red uptake (NRU) assay, in vitro scratch assay, and comet assay, were performed for anticancer efficacy evaluation. RESULTS: The formation of spherical monodispersed bimetallic nanoparticles with an average size of 50 nm was recorded using TEM. We observed dose-dependent cytotoxicity of CMBNPs in the HT-29 cell line with an IC50 dose of 115.2 µg/mL. On the other hand, CMBNPs did not show significant cytotoxicity against normal cell lines (Vero cells). Furthermore, the treatment of CMBNPs inhibited the migration of cancer cells and caused DNA damage with a significant increase in comet tail length. CONCLUSIONS: The results showed substantial anticancer efficacy of CMBNPs against the studied cancer cell line. However, it is advocated that the current work be expanded to different in vitro cancer models so that an in vivo validation could be carried out in the most appropriate cancer model.

4.
Healthcare (Basel) ; 11(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36981574

RESUMO

Enterobius vermicularis is a threadlike parasite also known as "pinworms". It is the most common helminth infection, affecting the gastrointestinal tracts of children worldwide, although it seldom causes any fatalities. Enterobius vermicularis infections are usually asymptomatic and may only cause anal pruritis, with occasional reported cases of ectopic migration into the appendix or the female genital tract by adult pinworms. Here, we report a case of a 15-year-old girl who presented to the emergency department with high-grade fever, vomiting, and vague abdominal pain for three days. She was diagnosed with acute abdominal pain and underwent emergency ileocecectomy, but died the following day. Pathological examination of ileocecal junction showed intraluminal and intramural Enterobius vermicularis, which were attributed as the cause of her death in the absence of any other pathologies. Death due to Enterobius vermicularis is rare; this case calls for clinicians to be vigilant in exploring Enterobius vermicularis infections in patients with undiagnosed acute abdominal pain, since it could be a potential cause of death.

5.
J Mol Recognit ; 36(6): e3009, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36841950

RESUMO

Several proteins and peptides tend to form an amyloid fibril, causing a range of unrelated diseases, from neurodegenerative to certain types of cancer. In the native state, these proteins are folded and soluble. However, these proteins acquired ß-sheet amyloid fibril due to unfolding and aggregation. The conversion mechanism from well-folded soluble into amorphous or amyloid fibril is not well understood yet. Here, we induced unfolding and aggregation of hen egg-white lysozyme (HEWL) by reducing agent dithiothreitol and applied mechanical sheering force by constant shaking (1000 rpm) on the thermostat for 7 days. Our turbidity results showed that reduced HEWL rapidly formed aggregates, and a plateau was attained in nearly 5 h of incubation in both shaking and non-shaking conditions. The turbidity was lower in the shaking condition than in the non-shaking condition. The thioflavin T binding and transmission electron micrographs showed that reduced HEWL formed amorphous aggregates in both conditions. Far-UV circular dichroism results showed that reduced HEWL lost nearly all alpha-helical structure, and ß-sheet secondary structure was not formed in both conditions. All the spectroscopic and microscopic results showed that reduced HEWL formed amorphous aggregates under both conditions.


Assuntos
Amiloide , Muramidase , Animais , Temperatura , Muramidase/química , Amiloide/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Galinhas/metabolismo
6.
Mol Biol Rep ; 49(10): 9565-9573, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35970968

RESUMO

BACKGROUND: The demand for environmentally friendly and cost-effective plant-based products for the development of cancer therapeutics has been increasing. Yohimbine (α2-adrenergic receptor antagonist) is a stimulant and aphrodisiac used to improve erectile dysfunction. In this study, we aimed to evaluate the anticancer potential of yohimbine in drug-resistant oral cancer KB-ChR-8-5 cells using different biomolecular techniques. METHODS: We estimated the anticancer efficacy of yohimbine using different assays, such as MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell cytotoxicity, cell morphology, cell apoptosis, reactive oxygen species (ROS) formation, and modulation in the mitochondrial membrane potential (MMP). RESULTS: Yohimbine showed a dose-dependent increase in cytotoxicity with a 50% inhibitory concentration (IC50) of 44 µM against KB-ChR-8-5 cancer cell lines. Yohimbine treatment at 40 µM and 50 µM resulted in a considerable change in cell morphology, including shrinkage, detachment, membrane blebbing, and deformed shape. Moreover, at the dose of IC50 and above, a significant induction was observed in the generation of ROS and depolarization of MMP. The possible mechanisms of action of yohimbine underlying the dose-dependent increase in cytotoxicity may be due to the induction of apoptosis, ROS generation, and modulation of MMP. CONCLUSION: Overall, yohimbine showed a significant anticancer potential against drug-resistant oral cancer KB-ChR-8-5 cells. Our study suggests that besides being an aphrodisiac, yohimbine can be used as a drug repurposing agent. However, more research is required in different in vitro and in vivo models to confirm the feasibility of yohimbine in clinics.


Assuntos
Afrodisíacos , Neoplasias Bucais , Antagonistas Adrenérgicos/farmacologia , Afrodisíacos/farmacologia , Apoptose , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial , Neoplasias Bucais/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Ioimbina/farmacologia
7.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807235

RESUMO

Alpha-amylase (α-amylase) is a key player in the management of diabetes and its related complications. This study was intended to have an insight into the binding of caffeic acid and coumaric acid with α-amylase and analyze the effect of these compounds on the formation of advanced glycation end-products (AGEs). Fluorescence quenching studies suggested that both the compounds showed an appreciable binding affinity towards α-amylase. The evaluation of thermodynamic parameters (ΔH and ΔS) suggested that the α-amylase-caffeic/coumaric acid complex formation is driven by van der Waals force and hydrogen bonding, and thus complexation process is seemingly specific. Moreover, glycation and oxidation studies were also performed to explore the multitarget to manage diabetes complications. Caffeic and coumaric acid both inhibited fructosamine content and AGE fluorescence, suggesting their role in the inhibition of early and advanced glycation end-products (AGEs). However, the glycation inhibitory potential of caffeic acid was more in comparison to p-coumaric acid. This high antiglycative potential can be attributed to its additional -OH group and high antioxidant activity. There was a significant recovery of 84.5% in free thiol groups in the presence of caffeic acid, while coumaric attenuated the slow recovery of 29.4% of thiol groups. In vitro studies were further entrenched by in silico studies. Molecular docking studies revealed that caffeic acid formed six hydrogen bonds (Trp 59, Gln 63, Arg 195, Arg 195, Asp 197 and Asp 197) while coumaric acid formed four H-bonds with Trp 59, Gln 63, Arg 195 and Asp 300. Our studies highlighted the role of hydrogen bonding, and the ligands such as caffeic or coumaric acid could be exploited to design antidiabetic drugs.


Assuntos
Ácidos Cumáricos , alfa-Amilases , Produtos Finais de Glicação Avançada/metabolismo , Simulação de Acoplamento Molecular , Compostos de Sulfidrila
8.
Biophys Chem ; 291: 106823, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35868967

RESUMO

P-Coumaric acid (p-CA) is a plant metabolite with anti-inflammatory and antioxidant effects. Due to its therapeutic potential, p-CA has attracted much attention from the scientific community lately. Oxidative stress, amyloid formation, and impaired proteasomal degradation are hallmarks of neurodegenerative diseases like Alzheimer's (AD) and are targets for developing therapeutics against such conditions. Here, we have investigated the anti-amyloidogenic properties of p-coumaric acid on hen egg white lysozyme (HEWL). Heat, pH, and agitation (55 °C, pH 2.0, 600 rpm) stress were used to induce amyloid formation in lysozyme. The aggregates characterization was done by turbidity, Rayleigh light scattering (RLS), and thioflavin-T (ThT) assays. Moreover, ANS (1-anilino naphthalene sulphate) binding assay and circular dichroism (CD) were employed to unveil protein hydrophobicity and secondary structure perturbation, respectively. Lysozyme demonstrated increased hydrophobicity and transition of α-helix to ß-sheet under aggregating conditions. Moreover, co-incubation of lysozyme with p-coumaric acid attenuates the process of amyloid in a concentration dependent manner. At 50 and 200 µM concentrations of p-coumaric acid, lysozyme retained its native-like folded structure. Cytotoxicity protection on human SK-N-SH neuroblastoma cell line was also observed using MTT assay and phase contrast microscopy. In addition, transmission electron microscopy (TEM) reaffirms the fibrillar nature of lysozyme aggregates and their attenuation by p-coumaric acid. The steady state fluorescence revealed that the mode of fluorescence quenching for the HEWL-p-coumaric acid interaction is static rather than dynamic. Moderate strength of binding in order of 104 M-1 exists between HEWL and p-coumaric acid. Thermodynamic parameters (∆H and ∆S) obtained from van't Hoff plot suggested spontaneous reaction with hydrophobic interaction. A slight micro-environmental change in HEWL around Tyr residue was observed during the binding process with the help of synchronous fluorescence. Molecular docking analysis reported the involvement of amino acid residues (TRP63, LEU75, ASP101, LYS97) to form a complex between HEWL-p-coumaric acid. The observed anti-amyloidogenic and inherent antioxidative properties of p-coumaric acid could be helpful to design a neuroprotective agent.


Assuntos
Amiloide , Muramidase , Humanos , Muramidase/química , Simulação de Acoplamento Molecular , Amiloide/química , Ácidos Cumáricos/farmacologia , Proteínas Amiloidogênicas , Antioxidantes/farmacologia , Antioxidantes/química
9.
Int J Biol Macromol ; 209(Pt A): 984-990, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35452699

RESUMO

MERS-CoV main protease (Mpro) is essential for the maturation of the coronavirus; therefore, considered a potential drug target. Detailed conformational information is essential to developing antiviral therapeutics. However, the conformation of MERS-CoV Mpro under different conditions is poorly characterized. In this study, MERS-CoV Mpro was recombinantly produced in E.coli and characterized its structural stability with respect to changes in pH and temperatures. The intrinsic and extrinsic fluorescence measurements revealed that MERS-CoV Mpro tertiary structure was exposed to the polar environment due to the unfolding of the tertiary structure. However, the secondary structure of MERS-CoV Mpro was gained at low pH because of charge-charge repulsion. Furthermore, differential scanning fluorometry studies of Mpro showed a single thermal transition at all pHs except at pH 2.0; no transitions were observed. The data from the spectroscopic studies suggest that the MERS-CoV Mpro forms a molten globule-like state at pH 2.0. Insilico studies showed that the covid-19 Mpro shows 96.08% and 50.65% similarity to that of SARS-CoV Mpro and MERS-CoV Mpro, respectively. This study provides a basic understanding of the thermodynamic and structural properties of MERS-CoV Mpro.


Assuntos
Proteases 3C de Coronavírus , Coronavírus da Síndrome Respiratória do Oriente Médio , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Conformação Proteica , Proteínas Recombinantes
10.
Pharmaceutics ; 13(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066092

RESUMO

The continuous loss of human life due to the paucity of effective drugs against different forms of cancer demands a better/noble therapeutic approach. One possible way could be the use of nanostructures-based treatment methods. In the current piece of work, we have synthesized silver nanoparticles (AgNPs) using plant (Heliotropiumbacciferum) extract using AgNO3 as starting materials. The size, shape, and structure of synthesized AgNPs were confirmed by various spectroscopy and microscopic techniques. The average size of biosynthesized AgNPs was found to be in the range of 15 nm. The anticancer potential of these AgNPs was evaluated by a battery of tests such as MTT, scratch, and comet assays in breast (MCF-7) and colorectal (HCT-116) cancer models. The toxicity of AgNPs towards cancer cells was confirmed by the expression pattern of apoptotic (p53, Bax, caspase-3) and antiapoptotic (BCl-2) genes by RT-PCR. The cell viability assay showed an IC50 value of 5.44 and 9.54 µg/mL for AgNPs in MCF-7 and HCT-116 cell lines respectively. We also observed cell migration inhibiting potential of AgNPs in a concentration-dependent manner in MCF-7 cell lines. A tremendous rise (150-250%) in the production of ROS was observed as a result of AgNPs treatment compared with control. Moreover, the RT-PCR results indicated the difference in expression levels of pro/antiapoptotic proteins in both cancer cells. All these results indicate that cell death observed by us is mediated by ROS production, which might have altered the cellular redox status. Collectively, we report the antimetastasis potential of biogenic synthesized AgNPs against breast and colorectal cancers. The biogenic synthesis of AgNPs seems to be a promising anticancer therapy with greater efficacy against the studied cell lines.

11.
Int J Biol Macromol ; 159: 87-97, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32437808

RESUMO

The aldose reductase (AR) enzyme is considered a potential target for the management of diabetic complications. In this study, we describe the binding and enzyme kinetics of AR by naringenin, a bioflavonoid present in many dietary sources. Naringenin showed an inhibitory effect on the activity of AR with an IC50 value of 2.6 µM in an uncompetitive manner. Binding studies confirmed that the naringenin-AR complex has high spontaneous affinity (Ka = 1.94-7.88 × 104) with negative ΔG° value (-5.78 kcal mol-1). The interaction was enthalpy driven and the microenvironment of aromatic residues of AR was also altered. Various stages of protein oxidation and glycation were also measured. Naringenin inhibited fructosamine content by approximately 31.6% at 10 µM, and at the same concentration, >93% inhibition of fluorescent advanced glycation end-products (AGEs) was achieved. There was a significant recovery in free thiol groups and carbonyl content of bovine serum albumin (BSA). Furthermore, molecular docking of naringenin with AR revealed that naringenin formed two hydrogen bonds (Asn160 and Ile260), and three Pi-Pi interactions (two with Trp20 and one with His110). This study provides molecular insight of naringenin-AR interaction and mechanism of antiglycation which may be useful in the development of inhibitors for AGEs formation.


Assuntos
Aldeído Redutase/química , Inibidores Enzimáticos/química , Flavanonas/química , Produtos Finais de Glicação Avançada/metabolismo , Simulação de Acoplamento Molecular , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/farmacologia , Flavanonas/farmacologia , Frutosamina/metabolismo , Cinética , Ligação Proteica , Carbonilação Proteica , Soroalbumina Bovina/metabolismo
12.
Pak J Biol Sci ; 22(1): 8-14, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30796763

RESUMO

BACKGROUND AND OBJECTIVE: The aim of the current study was to investigate in detail the effect of the active metabolite of vitamin D3 [1, 25 (OH)2 D3] in ameliorating the induced oxidative damage to DNA. MATERIALS AND METHODS: Primary cortical neuron cultures from one week old Wister rats were set up in sterile conditions. The neuron cultures were maintained for up to 72 h in culture in the presence of varying doses of vitamin D. Cells were exposed to (0.5 mM H2O2) for 2 h prior to collection of condition medium and cell pellet for Biochemical Assays. Control and H2O2 treated cultures were maintained without any treatment with vitamin D. RESULTS: Pre-treatment with 0.25 µg mL-1 for 24 and 48 h significantly reduced the oxidative stress. 8-hydroxydeoxyguanosine a ubiquitous marker of oxidative stress had also shown to be significantly reduced. The DNA damage marker PolyUB of histones was observed in the neuron treated with H2O2 only. CONCLUSION: This study revealed that oxidation of DNA by hydrogen peroxide caused extensive DNA damage, resulting in polyubiquitination of histones. The pre-treatment with vitamin D3 however completely reversed the DNA damage cascade induced by hydrogen peroxide and protected the DNA.


Assuntos
Dano ao DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Vitamina D/farmacologia , Animais , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA