Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 44(1)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38088444

RESUMO

ß-Glucans are valuable functional polysaccharides distributed in nature, especially in the cell walls of fungi, yeasts, bacteria, and cereals. The unique features of ß-glucans, such as water solubility, viscosity, molecular weight, and so on, have rendered them to be broadly applied in various food systems as well as in medicine to improve human health. Moreover, inhibition of cancer development could be achieved by an increase in immune system activity via ß-glucans. ß-glucans, which are part of a class of naturally occurring substances known as biological response modifiers (BRMs), have also shown evidence of being anti-tumorogenic, anti-cytotoxic, and anti-mutagenic. These properties make them attractive candidates for use as pharmaceutical health promoters. Along these lines, they could activate particular proteins or receptors, like lactosylceramide (LacCer), Dickin-1, complement receptor 3 (CR3), scavenge receptors (SR), and the toll-like receptor (TLR). This would cause the release of cytokines, which would then activate other antitumor immune cells, like macrophages stimulating neutrophils and monocytes. These cells are biased toward pro-inflammatory cytokine synthesis and phagocytosis enhancing the elicited immunological responses. So, to consider the importance of ß-glucans, the present review introduces the structure characteristics, biological activity, and antitumor functions of fungal ß-glucans, as well as their application.


Assuntos
beta-Glucanas , Humanos , beta-Glucanas/uso terapêutico , Fagocitose , Neutrófilos , Macrófagos/metabolismo , Citocinas/metabolismo
2.
Cancer Cell Int ; 22(1): 262, 2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35989351

RESUMO

Glioblastoma belongs to the most aggressive type of cancer with a low survival rate that is characterized by the ability in forming a highly immunosuppressive tumor microenvironment. Intercellular communication are created via exosomes in the tumor microenvironment through the transport of various biomolecules. They are primarily involved in tumor growth, differentiation, metastasis, and chemotherapy or radiation resistance. Recently several studies have highlighted the critical role of tumor-derived exosomes against immune cells. According to the structural and functional properties, exosomes could be essential instruments to gain a better molecular mechanism for tumor understanding. Additionally, they are qualified as diagnostic/prognostic markers and therapeutic tools for specific targeting of invasive tumor cells such as glioblastomas. Due to the strong dependency of exosome features on the original cells and their developmental status, it is essential to review their critical modulating molecules, clinical relevance to glioma, and associated signaling pathways. This review is a non-clinical study, as the possible role of exosomes and exosomal microRNAs in glioma cancer are reported. In addition, their content to overcome cancer resistance and their potential as diagnostic biomarkers are analyzed.

3.
Cell Mol Biol Lett ; 27(1): 38, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562685

RESUMO

Designing and producing an effective vaccine is the best possible way to reduce the burden and spread of a disease. During the coronavirus disease 2019 (COVID-19) pandemic, many large pharmaceutical and biotechnology companies invested a great deal of time and money in trying to control and combat the disease. In this regard, due to the urgent need, many vaccines are now available earlier than scheduled. Based on their manufacturing technology, the vaccines available for COVID-19 (severe acute respiratory syndrome coronavirus 2 (SAR-CoV2)) infection can be classified into four platforms: RNA vaccines, adenovirus vector vaccines, subunit (protein-based) vaccines, and inactivated virus vaccines. Moreover, various drugs have been deemed to negatively affect the progression of the infection via various actions. However, adaptive variants of the SARS-CoV-2 genome can alter the pathogenic potential of the virus and increase the difficulty of both drug and vaccine development. In this review, along with drugs used in COVID-19 treatment, currently authorized COVID-19 vaccines as well as variants of the virus are described and evaluated, considering all platforms.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Vacinas , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2
4.
In Silico Pharmacol ; 10(1): 6, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369404

RESUMO

Anti-CD20 antibodies such as ofatumumab has demonstrated efficacy in relapsed/refractory chronic lymphocytic leukemia, are among the most successful therapies to date. In this study, we have designed an immunotoxin composed of Granzyme B and the high affinity variant of Ofatumumab. Different simulation software applied to explore the structure of Granzyme B, a serine protease in cytotoxic lymphocytes granules as an apoptosis mediator was attached to its specific antibody structure (Ofatumumab) via an adaptor sequence. The accuracy, energy minimization and characterization of biological properties of the final structure were evaluated. Our computational outcomes indicated that the employed method for structure prediction has been successfully managed to design the immunotoxin structure. The precise and accurate design of the immune-therapeutic agents against cancer cells can be confirmed by employment of in-silico approaches. Consequently, based on this approach we could introduce a capable immunotoxin which specifically targeting CD20 in an accurate orientation and initiates cancer cell destruction by its toxin domain. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-022-00120-6.

5.
Cell Mol Biol Lett ; 27(1): 33, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397496

RESUMO

BACKGROUND: Nowadays, conventional medical treatments such as surgery, radiotherapy, and chemotherapy cannot cure all types of cancer. A promising approach to treat solid tumors is the use of tumor-targeting peptides to deliver drugs or active agents selectively. RESULT: Introducing beneficial therapeutic approaches, such as therapeutic peptides and their varied methods of action against tumor cells, can aid researchers in the discovery of novel peptides for cancer treatment. The biomedical applications of therapeutic peptides are highly interesting. These peptides, owing to their high selectivity, specificity, small dimensions, high biocompatibility, and easy modification, provide good opportunities for targeted drug delivery. In recent years, peptides have shown considerable promise as therapeutics or targeting ligands in cancer research and nanotechnology. CONCLUSION:  This study reviews a variety of therapeutic peptides and targeting ligands in cancer therapy. Initially, three types of tumor-homing and cell-penetrating peptides (CPPs) are described, and then their applications in breast, glioma, colorectal, and melanoma cancer research are discussed.


Assuntos
Antineoplásicos , Peptídeos Penetradores de Células , Glioma , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Glioma/tratamento farmacológico , Humanos , Ligantes , Neoplasias/tratamento farmacológico
6.
Cells ; 10(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34831240

RESUMO

Rheumatoid arthritis (RA) is considered a chronic systemic, multi-factorial, inflammatory, and progressive autoimmune disease affecting many people worldwide. While patients show very individual courses of disease, with RA focusing on the musculoskeletal system, joints are often severely affected, leading to local inflammation, cartilage destruction, and bone erosion. To prevent joint damage and physical disability as one of many symptoms of RA, early diagnosis is critical. Auto-antibodies play a pivotal clinical role in patients with systemic RA. As biomarkers, they could help to make a more efficient diagnosis, prognosis, and treatment decision. Besides auto-antibodies, several other factors are involved in the progression of RA, such as epigenetic alterations, post-translational modifications, glycosylation, autophagy, and T-cells. Understanding the interplay between these factors would contribute to a deeper insight into the causes, mechanisms, progression, and treatment of the disease. In this review, the latest RA research findings are discussed to better understand the pathogenesis, and finally, treatment strategies for RA therapy are presented, including both conventional approaches and new methods that have been developed in recent years or are currently under investigation.


Assuntos
Artrite Reumatoide/patologia , Artrite Reumatoide/terapia , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Autoanticorpos/metabolismo , Autofagia/genética , Epigênese Genética , Glicosilação , Humanos , Estresse Oxidativo/genética
7.
Biol Proced Online ; 23(1): 20, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736402

RESUMO

Auto-immune diseases involved at least 25% of the population in wealthy countries. Several factors including genetic, epigenetic, and environmental elements are implicated in development of Rheumatoid Arthritis as an autoimmune disease. Autoantibodies cause synovial inflammation and arthritis, if left untreated or being under continual external stimulation, could result in chronic inflammation, joint injury, and disability. T- and B-cells, signaling molecules, proinflammatory mediators, and synovium-specific targets are among the new therapeutic targets. Exosomes could be employed as therapeutic vectors in the treatment of autoimmune diseases. Herein, the role of cell organelle particularly exosomes in Rheumatoid Arthritis had discussed and some therapeutic applications of exosome highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA