Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(5): 134, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862663

RESUMO

Inclusion complexes require higher concentration of Beta cyclodextrins (ßCD) resulting in increased formulation bulk, toxicity, and production costs. This systematic review offers a comprehensive analysis using Quality by design (QbD) as a tool to predict potential applications of Polyvinylpyrrolidone (PVP) as a ternary substance to address issues of inclusion complexes. We reviewed 623 documents from 2013 to 2023 and Eighteen (18) research papers were selected for statistical and meta-analysis using the QbD concept to identify the most critical factors for selecting drugs and effect of PVP on inclusion complexes. The QbD analysis revealed that Molecular weight (MW), Partition coefficient (Log P), and the auxiliary substance ratio directly affected complexation efficiency (CE), thermodynamic stability in terms of Gibbs free energy (ΔG), and percent drug release. However, Stability constant (Ks) remained unaffected by any of these parameters. The results showed that low MW (250), median Log P (6), and a ßCD: PVP ratio of 2:3 would result in higher CE, lower G, and improved drug release. PVP improves drug solubility, enhances delivery and therapeutic outcomes, and counteracts increased drug ionization due to decreased pH. In certain cases, its bulky nature and hydrogen bonding with CD molecules can form non-inclusion complexes. The findings of the study shows that there is potential molecular interaction between PVP and ß-cyclodextrins, which possibly enhances the stability of inclusion complexes for drug with low MW and log P values less than 9. The systematic review shows a comprehensive methodology based on QbD offers a replicable template for future investigations into drug formulation research.


Assuntos
Ciclodextrinas , Povidona , Solubilidade , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Química Farmacêutica/métodos , Ciclodextrinas/química , Liberação Controlada de Fármacos , Excipientes/química , Peso Molecular , Projetos Piloto , Povidona/química , Termodinâmica
2.
Curr Pharm Des ; 29(36): 2853-2866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946351

RESUMO

Many methods, including solid dispersion, micellization, and inclusion complexes, have been employed to increase the solubility of potent drugs. Beta-cyclodextrin (ßCD) is a cyclic oligosaccharide consisting of seven glucopyranoside molecules, and is a widely used polymer for formulating soluble inclusion complexes of hydrophobic drugs. The enzymatic activity of Glycosyltransferase or α-amylase converts starch or its derivatives into a mixture of cyclodextrins. The ßCD units are characterized by α -(1-4) glucopyranose bonds. Cyclodextrins possess certain properties that make them very distinctive because of their toroidal or truncated cage-like supramolecular configurations with multiple hydroxyl groups at each end. This allowed them to encapsulate hydrophobic compounds by forming inclusion complexes without losing their solubility in water. Chemical modifications and newer derivatives, such as methylated ßCD, more soluble hydroxyl propyl methyl ßCD, and sodium salts of sulfobutylether-ßCD, known as dexolve® or captisol®, have envisaged the use of CDs in various pharmaceutical, medical, and cosmetic industries. The successful inclusion of drug complexes has demonstrated improved solubility, bioavailability, drug resistance reduction, targeting, and penetration across skin and brain tissues. This review encompasses the current applications of ß-CDs in improving the disease outcomes of antimicrobials and antifungals as well as anticancer and anti-tubercular drugs.


Assuntos
Ciclodextrinas , Humanos , Ciclodextrinas/farmacologia , Ciclodextrinas/química , Solubilidade , Interações Hidrofóbicas e Hidrofílicas , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA