Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 8(11): 2067-2079, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828248

RESUMO

Mpox virus (MPXV) primarily infects human skin to cause lesions. Currently, robust models that recapitulate skin infection by MPXV are lacking. Here we demonstrate that human induced pluripotent stem cell-derived skin organoids are susceptible to MPXV infection and support infectious virus production. Keratinocytes, the predominant cell type of the skin epithelium, effectively support MPXV infection. Using transmission electron microscopy, we visualized the four stages of intracellular virus particle assembly: crescent formation, immature virions, mature virions and wrapped virions. Transcriptional analysis showed that MPXV infection rewires the host transcriptome and triggers abundant expression of viral transcripts. Early treatment with the antiviral drug tecovirimat effectively inhibits infectious virus production and prevents host transcriptome rewiring. Delayed treatment with tecovirimat also inhibits infectious MPXV particle production, albeit to a lesser extent. This study establishes human skin organoids as a robust experimental model for studying MPXV infection, mapping virus-host interactions and testing therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mpox , Humanos , Monkeypox virus , Células-Tronco Pluripotentes Induzidas/patologia , Organoides
2.
Plants (Basel) ; 12(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176806

RESUMO

Plants produce an incredible variety of volatile organic compounds (VOCs) that assist the interactions with their environment, such as attracting pollinating insects and seed dispersers and defense against herbivores, pathogens, and parasites. Furthermore, VOCs have a significant economic impact on crop quality, as well as the beverage, food, perfume, cosmetics and pharmaceuticals industries. These VOCs are mainly classified as terpenoids, benzenoids/phenylpropanes, and fatty acid derivates. Fruits and vegetables are rich in minerals, vitamins, antioxidants, and dietary fiber, while aroma compounds play a major role in flavor and quality management of these horticultural commodities. Subtle shifts in aroma compounds can dramatically alter the flavor and texture of fruits and vegetables, altering their consumer appeal. Rapid innovations in -omics techniques have led to the isolation of genes encoding enzymes involved in the biosynthesis of several volatiles, which has aided to our comprehension of the regulatory molecular pathways involved in VOC production. The present review focuses on the significance of aroma volatiles to the flavor and aroma profile of horticultural crops and addresses the industrial applications of plant-derived volatile terpenoids, particularly in food and beverages, pharmaceuticals, cosmetics, and biofuel industries. Additionally, the methodological constraints and complexities that limit the transition from gene selection to host organisms and from laboratories to practical implementation are discussed, along with metabolic engineering's potential for enhancing terpenoids volatile production at the industrial level.

4.
Front Plant Sci ; 14: 1133892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968408

RESUMO

Introduction: Cadmium (Cd) stress is a significant threat to soybean production, and enhancing Cd tolerance in soybean is the focus of this study. The WRKY transcription factor family is associated with abiotic stress response processes. In this study, we aimed to identify a Cd-responsive WRKY transcription factor GmWRKY172 from soybean and investigate its potential for enhancing Cd tolerance in soybean. Methods: The characterization of GmWRKY172 involved analyzing its expression pattern, subcellular localization, and transcriptional activity. To assess the impact of GmWRKY172, transgenic Arabidopsis and soybean plants were generated and examined for their tolerance to Cd and Cd content in shoots. Additionally, transgenic soybean plants were evaluated for Cd translocation and various physiological stress indicators. RNA sequencing was performed to identify the potential biological pathways regulated by GmWRKY172. Results: GmWRKY172 was significantly upregulated by Cd stress, highly expressed in leaves and flowers, and localized to the nucleus with transcriptional activity. Transgenic plants overexpressing GmWRKY172 showed enhanced Cd tolerance and reduced Cd content in shoots compared to WT. Lower Cd translocation from roots to shoots and seeds was also observed in transgenic soybean. Under Cd stress, transgenic soybean accumulated less malondialdehyde (MDA) and hydrogen peroxide (H2O2) than WT plants, with higher flavonoid and lignin contents, and peroxidase (POD) activity. RNA sequencing analysis revealed that many stress-related pathways were regulated by GmWRKY172 in transgenic soybean, including flavonoid biosynthesis, cell wall synthesis, and peroxidase activity. Discussion: Our findings demonstrated that GmWRKY172 enhances Cd tolerance and reduces seed Cd accumulation in soybean by regulating multiple stress-related pathways, and could be a promising candidate for breeding Cd-tolerant and low Cd soybean varieties.

5.
Plant J ; 114(2): 355-370, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775978

RESUMO

Phosphorus (P) is a major element required for plant growth and development. To cope with P shortage, plants activate local and long-distance signaling pathways, such as an increase in the production and exudation of strigolactones (SLs). The role of the latter in mitigating P deficiency is, however, still largely unknown. To shed light on this, we studied the transcriptional response to P starvation and replenishment in wild-type rice and a SL mutant, dwarf10 (d10), and upon exogenous application of the synthetic SL GR24. P starvation resulted in major transcriptional alterations, such as the upregulation of P TRANSPORTER, SYG1/PHO81/XPR1 (SPX) and VACUOLAR PHOSPHATE EFFLUX TRANSPORTER. Gene Ontology (GO) analysis of the genes induced by P starvation showed enrichment in phospholipid catabolic process and phosphatase activity. In d10, P deficiency induced upregulation of genes enriched for sesquiterpenoid production, secondary shoot formation and metabolic processes, including lactone biosynthesis. Furthermore, several genes induced by GR24 treatment shared the same GO terms with P starvation-induced genes, such as oxidation reduction, heme binding and oxidoreductase activity, hinting at the role that SLs play in the transcriptional reprogramming upon P starvation. Gene co-expression network analysis uncovered a METHYL TRANSFERASE that displayed co-regulation with known rice SL biosynthetic genes. Functional characterization showed that this gene encodes an enzyme catalyzing the conversion of carlactonoic acid to methyl carlactonoate. Our work provides a valuable resource to further studies on the response of crops to P deficiency and reveals a tool for the discovery of SL biosynthetic genes.


Assuntos
Oryza , Fosfatos , Fosfatos/metabolismo , Oryza/metabolismo , Lactonas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
6.
J Agric Food Chem ; 71(9): 3921-3938, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36842151

RESUMO

Nitrogen (N) is crucial for plant growth and development, especially in physiological and biochemical processes such as component of different proteins, enzymes, nucleic acids, and plant growth regulators. Six categories, such as transporters, nitrate absorption, signal molecules, amino acid biosynthesis, transcription factors, and miscellaneous genes, broadly encompass the genes regulating NUE in various cereal crops. Herein, we outline detailed research on bioengineering modifications of N metabolism to improve the different crop yields and biomass. We emphasize effective and precise molecular approaches and technologies, including N transporters, transgenics, omics, etc., which are opening up fascinating opportunities for a complete analysis of the molecular elements that contribute to NUE. Moreover, the detection of various types of N compounds and associated signaling pathways within plant organs have been discussed. Finally, we highlight the broader impacts of increasing NUE in crops, crucial for better agricultural yield and in the greater context of global climate change.


Assuntos
Produtos Agrícolas , Nitrogênio , Nitrogênio/metabolismo , Grão Comestível/química , Produção Agrícola , Proteínas de Membrana Transportadoras/metabolismo , Bioengenharia , Fertilizantes/análise
7.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835373

RESUMO

The SPIRAL1 (SPR1) gene family encodes microtubule-associated proteins that are essential for the anisotropic growth of plant cells and abiotic stress resistance. Currently, little is known about the characteristics and roles of the gene family outside of Arabidopsis thaliana. This study intended to investigate the SPR1 gene family in legumes. In contrast to that of A. thaliana, the gene family has undergone shrinking in the model legume species Medicago truncatula and Glycine max. While the orthologues of SPR1 were lost, very few SPR1-Like (SP1L) genes were identified given the genome size of the two species. Specifically, the M. truncatula and G. max genomes only harbor two MtSP1L and eight GmSP1L genes, respectively. Multiple sequence alignment showed that all these members contain conserved N- and C-terminal regions. Phylogenetic analysis clustered the legume SP1L proteins into three clades. The SP1L genes showed similar exon-intron organizations and similar architectures in their conserved motifs. Many essential cis-elements are present in the promoter regions of the MtSP1L and GmSP1L genes associated with growth and development, plant hormones, light, and stress. The expression analysis revealed that clade 1 and clade 2 SP1L genes have relatively high expression in all tested tissues in Medicago and soybean, suggesting their function in plant growth and development. MtSP1L-2, as well as clade 1 and clade 2 GmSP1L genes, display a light-dependent expression pattern. The SP1L genes in clade 2 (MtSP1L-2, GmSP1L-3, and GmSP1L-4) were significantly induced by sodium chloride treatment, suggesting a potential role in the salt-stress response. Our research provides essential information for the functional studies of SP1L genes in legume species in the future.


Assuntos
Glycine max , Medicago truncatula , Proteínas Associadas aos Microtúbulos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Medicago truncatula/classificação , Medicago truncatula/genética , Proteínas Associadas aos Microtúbulos/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Glycine max/classificação , Glycine max/genética , Verduras/metabolismo
8.
Life (Basel) ; 12(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36556426

RESUMO

Priming is used as a method to improve plant growth and alleviate the detrimental effects of pathogens. The present study was conducted to evaluate the effects of different priming methods in the context of resistance to Aspergillus niger in wheat (Triticum aestivum L.). Here, we show that different priming treatments­viz., hydropriming, osmotic priming, halopriming, and hormonal priming techniques can induce disease resistance by improving the biochemical contents of wheat, including chlorophyll, protein, proline, and sugar. In addition, physiological parameters­such as root length, shoot length, fresh and dry root/shoot ratios, and relative water content were positively affected by these priming methods. In essence, hydropriming and osmotic priming treatments were found to be more potent for enhancing wheat biochemical contents, along with all the physiological parameters, and for reducing disease severity. Hydropriming and osmotic priming significantly decreased disease severity, by 70.59−75.00% and 64.71−88.33%, respectively. RT-PCR and quantitative real-time PCR analyses of potentially important pathogenesis-related (PR)-protein genes (Thaumatin-like protein (TLP), chitinase, and ß-1,3-glucanase) in primed plants were evaluated: ß-1,3-glucanase was most highly expressed in all primed plants; Chitinase and TLP exhibited higher expression in hormonal-, halo-, osmotic-, and hydro-primed plants, respectively. These results suggest that the higher expression of ß-1,3-glucanase, TLP, and chitinase after hydropriming and osmotic priming may increase disease resistance in wheat. Our study demonstrates the greater potential of hydropriming and osmotic priming for alleviating stress caused by A. niger inoculation, and enhancing resistance to it, in addition to significantly improving plant growth. Thus, these priming methods could be beneficial for better plant growth and disease resistance in other plants.

9.
Front Plant Sci ; 13: 1052659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438095

RESUMO

The Golden 2-Like (G2-like or GLK) transcription factors are essential for plant growth, development, and many stress responses as well as heavy metal stress. However, G2-like regulatory genes have not been studied in soybean. This study identified the genes for 130 G2-Like candidates' in the genome of Glycine max (soybean). These GLK genes were located on all 20 chromosomes, and several of them were segmentally duplicated. Most GLK family proteins are highly conserved in Arabidopsis and soybean and were classified into five major groups based on phylogenetic analysis. These GmGLK gene promoters share cis-acting elements involved in plant responses to abscisic acid, methyl jasmonate, auxin signaling, low temperature, and biotic and abiotic stresses. RNA-seq expression data revealed that the GLK genes were classified into 12 major groups and differentially expressed in different tissues or organs. The co-expression network complex revealed that the GmGLK genes encode proteins involved in the interaction of genes related to chlorophyll biosynthesis, circadian rhythms, and flowering regulation. Real-time quantitative PCR analysis confirmed the expression profiles of eight GLK genes in response to cadmium (Cd) and copper (Cu) stress, with some GLK genes significantly induced by both Cd and Cu stress treatments, implying a functional role in defense responsiveness. Thus, we present a comprehensive perspective of the GLK genes in soybean and emphasize their important role in crop development and metal ion stresses.

10.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362043

RESUMO

Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Sementes/metabolismo , Arabidopsis/genética , Fatores de Transcrição/metabolismo , Engenharia Genética , Proteínas de Arabidopsis/genética
11.
Front Immunol ; 13: 906259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865517

RESUMO

Aedes aegypti is a crucial vector for many arboviral diseases that cause millions of deaths worldwide and thus is of major public health concern. Crystal (Cry) proteins, which are toxins produced by Bacillus thuringiensis, are structurally organized into three-domains, of which domain II is the most variable in terms of binding towards various toxin receptors. The binding of Cry11Aa to putative receptor such as aminopeptidase-N (APN) is explicitly inhibited by midgut C-type lectins (CTLs). The similarity between the domain II fold of Cry11Aa toxin and the carbohydrate recognition domain in the CTLs is a possible structural basis for the involvement of Cry domain II in the recognition of carbohydrates on toxin receptors. In this study, a site-directed point mutation was introduced into the A. aegypti CTLGA9 gene on the basis of molecular docking findings, leading to substitution of the Leucine-6 (Leu-6) residue in the protein with alanine. Subsequently, functional monitoring of the mutated protein was carried out. Unlike the amino acid residues of wild-type CTLGA9, none of the residues of mutant (m) CTLGA9 were competed with Cry11Aa for binding to the APN receptor interface. Additionally, ligand blot analysis showed that both wild-type and mutant CTLGA9 had similar abilities to bind to APN and Cry11Aa. Furthermore, in the competitive ELISA in which labeled mutant CTLGA9 (10 nM) was mixed with increasing concentrations of unlabeled Cry11Aa (0-500 nM), the mutant showed no competition with Cry11Aa for binding to APN., By contrast, in the positive control sample of labeled wild type CTLGA9 mixed with same concentrations of Cry11Aa competition between the two ligands for binding to the APN was evident. These results suggest that Leucine-6 may be the key site involved in the competitive receptor binding between CTLGA9 and Cry11Aa. Moreover, according to the bioassay results, mutant CTLGA9 could in fact enhance the toxicity of Cry11Aa. Our novel findings provide further insights into the mechanism of Cry toxicity as well as a theoretical basis for enhancing the mosquitocidal activity of these toxin through molecular modification strategies.


Assuntos
Aminoácidos , Proteínas de Bactérias , Aminoácidos/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Larva/genética , Lectinas Tipo C/metabolismo , Leucina/metabolismo , Simulação de Acoplamento Molecular , Mosquitos Vetores
12.
Front Immunol ; 13: 898198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634312

RESUMO

Aedes aegypti is one of the world's most dangerous mosquitoes, and a vector of diseases such as dengue fever, chikungunya virus, yellow fever, and Zika virus disease. Currently, a major global challenge is the scarcity of antiviral medicine and vaccine for arboviruses. Bacillus thuringiensis var israelensis (Bti) toxins are used as biological mosquito control agents. Endotoxins, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, and Cyt1Aa, are toxic to mosquitoes. Insect eradication by Cry toxin relies primarily on the interaction of cry toxins with key toxin receptors, such as aminopeptidase (APN), alkaline phosphatase (ALP), cadherin (CAD), and ATP-binding cassette transporters. The carbohydrate recognition domains (CRDs) of lectins and domains II and III of Cry toxins share similar structural folds, suggesting that midgut proteins, such as C-type lectins (CTLs), may interfere with interactions among Cry toxins and receptors by binding to both and alter Cry toxicity. In the present review, we summarize the functional role of C-type lectins in Ae. aegypti mosquitoes and the mechanism underlying the alteration of Cry toxin activity by CTLs. Furthermore, we outline future research directions on elucidating the Bti resistance mechanism. This study provides a basis for understanding Bti resistance, which can be used to develop novel insecticides.


Assuntos
Aedes , Infecção por Zika virus , Zika virus , Aedes/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Lectinas Tipo C/metabolismo , Mosquitos Vetores , Zika virus/metabolismo
13.
Sci Rep ; 12(1): 6457, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440671

RESUMO

The race between pathogens and their hosts is a major evolutionary driver, where both reshuffle their genomes to overcome and reorganize the defenses for infection, respectively. Evolutionary theory helps formulate predictions on the future evolutionary dynamics of SARS-CoV-2, which can be monitored through unprecedented real-time tracking of SARS-CoV-2 population genomics at the global scale. Here we quantify the accelerating evolution of SARS-CoV-2 by tracking the SARS-CoV-2 mutation globally, with a focus on the Receptor Binding Domain (RBD) of the spike protein determining infection success. We estimate that the > 820 million people that had been infected by October 5, 2021, produced up to 1021 copies of the virus, with 12 new effective RBD variants appearing, on average, daily. Doubling of the number of RBD variants every 89 days, followed by selection of the most infective variants challenges our defenses and calls for a shift to anticipatory, rather than reactive tactics involving collaborative global sequencing and vaccination.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mutação , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
Viruses ; 14(3)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35336882

RESUMO

Aedes albopictus is the sole vector for various mosquito-borne viruses, including dengue, chikungunya, and Zika. Ecofriendly biological agents are required to reduce the spread of these mosquito-borne infections. Mosquito densoviruses (MDVs) are entomopathogenic mosquito-specific viruses, which can reduce the capacity of isolated vectors and decrease mosquito-borne viral disease transmission. However, their variable pathogenicity restricts their commercial use. In the present study, we developed a series of novel larvicide oil suspensions (denoted Bacillus thuringiensis (Bti) oil, Ae. albopictus densovirus (AalDV-5) oil, and a mixture of AalDV-5+Bti oil), which were tested against Ae. albopictus larvae under experimental semi-field and open-field conditions. The effect of AalDV-5 on non-target species was also evaluated. The combined effect of AalDV-5+Bti was greater than that of individual toxins and was longer lasting and more persistent compared with the laboratory AalDV-5 virus strain. The virus was quantified on a weekly basis by quantitative polymerase chain reaction (qPCR) and was persistently detected in rearing water as well as in dead larvae. Wildtype densovirus is not pathogenic to non-target organisms. The present findings confirm the improved effect of a mixed microbial suspension (AalDV-5+Bti oil) larvicide against Ae. albopictus. The development and testing of these products will enable better control of the vector mosquitoes.


Assuntos
Aedes , Densovirus , Infecção por Zika virus , Zika virus , Animais , Densovirus/genética , Larva , Controle de Mosquitos , Mosquitos Vetores , Suspensões
15.
Plants (Basel) ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214903

RESUMO

The GIF gene family is one of the plant transcription factors specific to seed plants. The family members are expressed in all lateral organs produced by apical and floral meristems and contribute to the development of leaves, shoots, flowers, and seeds. This study identified eight GIF genes in the soybean genome and clustered them into three groups. Analyses of Ka/Ks ratios and divergence times indicated that they had undergone purifying selection during species evolution. RNA-sequence and relative expression patterns of these GmGIF genes tended to be conserved, while different expression patterns were also observed between the duplicated GIF members in soybean. Numerous cis-regulatory elements related to plant hormones, light, and stresses were found in the promoter regions of these GmGIF genes. Moreover, the expression patterns of GmGIF members were confirmed in soybean roots under cadmium (Cd) and copper (Cu) stress, indicating their potential functions in the heavy metal response in soybean. Our research provides valuable information for the functional characterization of each GmGIF gene in different legumes in the future.

16.
Toxins (Basel) ; 14(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35202174

RESUMO

Mosquito densoviruses (MDVs) are mosquito-specific viruses that are recommended as mosquito bio-control agents. The MDV Aedes aegypti densovirus (AeDNV) is a good candidate for controlling mosquitoes. However, the slow activity restricts their widespread use for vector control. In this study, we introduced the Bacillus thuringiensis (Bti) toxin Cry11Aa domain II loop α8 and Cyt1Aa loop ß6-αE peptides into the AeDNV genome to improve its mosquitocidal efficiency; protein expression was confirmed using nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Recombinant plasmids were transfected into mosquito C6/36 cell lines, and the expression of specific peptides was detected through RT-PCR. A toxicity bioassay against the first instar Aedes albopictus larvae revealed that the pathogenic activity of recombinant AeDNV was significantly higher and faster than the wild-type (wt) viruses, and mortality increased in a dose-dependent manner. The recombinant viruses were genetically stable and displayed growth phenotype and virus proliferation ability, similar to wild-type AeDNV. Our novel results offer further insights by combining two mosquitocidal pathogens to improve viral toxicity for mosquito control.


Assuntos
Aedes/efeitos dos fármacos , Aedes/virologia , Toxinas de Bacillus thuringiensis/toxicidade , Agentes de Controle Biológico , Densovirus/patogenicidade , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Animais , China , Densovirus/genética , Controle de Mosquitos/métodos , Mosquitos Vetores/virologia , Virulência/efeitos dos fármacos
17.
Mol Biol Rep ; 49(6): 5405-5417, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35025033

RESUMO

BACKGROUND: Strigolactones (SLs) are newly identified hormones and their biosynthesis is stimulated under phosphate deprivation and accomplished by the action of several enzymes, including the beta-carotene isomerase DWARF27 (D27). Expression of D27 is well renowned to respond to phosphate insufficiency. However, the identification and functional analysis of the carotenoid isomerase D27 genes are not elucidated in soybean. METHODS AND RESULTS: A total of six D27 genes were identified in the soybean genome and designated on the basis of chromosomal localization. According to the findings, these genes were irregularly distributed on chromosomes, and segmental repetition led to the expansion of the soybean GmD27 gene family. Based on a neighbor-joining phylogenetic tree, the predicted D27 proteins of soybean were divided into three clades. Based on RNA seq data analysis, GmD27 genes were differently expressed in various tissues but GmD27c was the highest. Therefore, GmD27c was chosen for the additional functional study due to its rather obvious transcription in nodulation and roots. RT-qPCR results showed that GmD27c was highly expressed in different nodule stages and in response to rhizobia infection. Functional characterization of GmD27c revealed that overexpression of GmD27c led to higher nodule number, while GmD27c knockdown caused fewer nodules compared to GUS control. Furthermore, GmD27c overexpressed and knockdown lines oppositely regulated the expression of numerous nodulation genes, which are vital for the development of nodules. CONCLUSION: This study not only discovered that SL biosynthesis and signaling pathway genes are conserved, but it also revealed that SL biosynthesis gene GmD27c and legume rhizobia have close interactions in controlling plant nodule number.


Assuntos
Glycine max , Rhizobium , Regulação da Expressão Gênica de Plantas/genética , Compostos Heterocíclicos com 3 Anéis , Lactonas , Fosfatos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo
18.
Plants (Basel) ; 10(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34961171

RESUMO

The YABBY gene family is one of the plant transcription factors present in all seed plants. The family members were extensively studied in various plants and shown to play important roles in plant growth and development, such as the polarity establishment in lateral organs, the formation and development of leaves and flowers, and the response to internal plant hormone and external environmental stress signals. In this study, a total of 364 YABBY genes were identified from 37 Brassicaceae genomes, of which 15 were incomplete due to sequence gaps, and nine were imperfect (missing C2C2 zinc-finger or YABBY domain) due to sequence mutations. Phylogenetic analyses resolved these YABBY genes into six compact clades except for a YAB3-like gene identified in Aethionema arabicum. Seventeen Brassicaceae species each contained a complete set of six basic YABBY genes (i.e., 1 FIL, 1 YAB2, 1 YAB3, 1 YAB5, 1 INO and 1 CRC), while 20 others each contained a variable number of YABBY genes (5-25) caused mainly by whole-genome duplication/triplication followed by gene losses, and occasionally by tandem duplications. The fate of duplicate YABBY genes changed considerably according to plant species, as well as to YABBY gene type. These YABBY genes were shown to be syntenically conserved across most of the Brassicaceae species, but their functions might be considerably diverged between species, as well as between paralogous copies, as demonstrated by the promoter and expression analysis of YABBY genes in two Brassica species (B. rapa and B. oleracea). Our study provides valuable insights for understanding the evolutionary story of YABBY genes in Brassicaceae and for further functional characterization of each YABBY gene across the Brassicaceae species.

20.
Int J Infect Dis ; 110: 267-271, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34289407

RESUMO

Immunocompromised patients who have a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection pose many clinical and public health challenges. We describe the case of a hematopoietic stem cell transplantation patient with lymphoma who had a protracted illness requiring three consecutive hospital admissions. Whole genome sequencing confirmed two different SARS-CoV-2 clades. Clinical management issues and the unanswered questions arising from this case are discussed.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Humanos , Reinfecção , SARS-CoV-2 , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA