Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Sci Sleep ; 14: 1623-1639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111259

RESUMO

Purpose: Gut dysbiosis can cause cardiometabolic disease. Gut dysbiosis can be independently caused by high-fat diet (HFD) and intermittent hypoxia (IH; characterizing obstructive sleep apnea), but the interactive effect of combined intermittent and sustained hypoxia (IH+SH) (characterizing obesity hypoventilation syndrome) and HFD on gut dysbiosis is unclear. We aimed to investigate the interactive effect of a combination of IH and SH and HFD on proximal colonic microbiota and colonic gene expression pattern. Methods: Male mice (n=16) were randomly received four different combinations of diet (normal versus HFD) and oxygen conditions (normoxia versus IH+SH) for 4 weeks. Bacterial DNA and mucosal epithelial cell RNA from proximal colon were collected for analysis of adherent microbiome and host's gene expression analysis. Results: HFD during IH+SH (22.6 ± 5.73; SD) led to greater Firmicutes: Bacteroidetes ratio than HFD during normoxia (5.89 ± 1.19; p=0.029). HFD significantly decreased microbial diversity as compared to normal diet, but the addition of IH+SH to HFD mildly reversed such effects. When compared to HFD during normoxia, HFD with combination of IH+SH resulted in changes to host mucosal gene expression for apical junctional complexes and adhesion molecules. Specifically, when compared to HFD during normoxia, HFD during IH+SH led to upregulation of Claudin 2 and Syk (tight junction dysfunction and increased mucosal permeability), while the barrier promoting claudin 4 was downregulated. Conclusion: HFD during combined IH and SH causes greater gut dysbiosis and potentially adverse changes in colonic epithelial transcriptome than HFD during normoxia. The latter changes are suggestive of impaired gut barrier function.

2.
J Clin Sleep Med ; 17(3): 567-591, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33108267

RESUMO

STUDY OBJECTIVES: OSA is a common sleep disorder. There is a strong link between sleep-related breathing disorders and cardiovascular and cerebrovascular diseases. Matrix metalloproteinase-9 (MMP-9) is a biological marker for extracellular matrix degradation, which plays a significant role in systemic hypertension, myocardial infarction and postmyocardial infarction heart failure, and ischemic stroke. This article reviews MMP-9 as an inflammatory mediator and a potential messenger between OSA and OSA-induced comorbidities. METHODS: We reviewed the MEDLINE database (PubMed) for publications on MMP-9, OSA, and cardiovascular disease, identifying 1,592 studies and including and reviewing 50 articles for this work. RESULTS: There is strong evidence that MMP-9 and tissue inhibitor of metalloproteinase-1 levels are elevated in patients with OSA (mainly MMP-9), systemic hypertension, myocardial infarction, and postmyocardial infarction heart failure. Our study showed variable results that could be related to the sample size or to laboratory methodology. CONCLUSIONS: MMP-9 and its endogenous inhibitor, tissue inhibitor of metalloproteinase-1, are a common denominator in OSA, systemic hypertension, myocardial infarction, and heart failure. This characterization makes MMP-9 a target for developing novel selective inhibitors that can serve as adjuvant therapy in patients with OSA, which may ameliorate the cardiovascular and cerebrovascular mortality associated with OSA.


Assuntos
Hipertensão , AVC Isquêmico , Apneia Obstrutiva do Sono , Humanos , Metaloproteinase 9 da Matriz , Inibidor Tecidual de Metaloproteinase-1 , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA