Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Microbiol ; 15: 1399331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006753

RESUMO

Various traditional management techniques are employed to control plant diseases caused by bacteria and fungi. However, due to their drawbacks and adverse environmental effects, there is a shift toward employing more eco-friendly methods that are less harmful to the environment and human health. The main aim of the study was to biosynthesize silver Nanoparticles (AgNPs) from Rhizoctonia solani and Cladosporium cladosporioides using a green approach and to test the antimycotic activity of these biosynthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). During the study, the presence of strong plasmon absorbance bands at 420 and 450 nm confirmed the AgNPs biosynthesis by the fungi Rhizoctonia solani and Cladosporium cladosporioides. The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Assessment of the antifungal activity of the silver nanoparticles against various plant pathogenic fungi was carried out by agar well diffusion assay. Different concentration of AgNPs, 5 mg/mL 10 mg/mL and 15 mg/mL were tested to know the inhibitory effect of fungal plant pathogens viz. Aspergillus flavus, Penicillium citrinum, Fusarium oxysporum, Fusarium metavorans, and Aspergillus aflatoxiformans. However, 15 mg/mL concentration of the AgNPs showed excellent inhibitory activity against all tested fungal pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.

2.
J Environ Manage ; 363: 121257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850913

RESUMO

The redesigned engineering building of nanocomposite (NCP) depends on metal oxides of palladium oxide (PdO) nanoparticles (NPs) conjugate with the n-type semiconductor of strontium oxide (SrO) NPs on the electron carrier surface of graphene oxide (GO) and reduce graphene oxide (rGO) nanosheet is the main target of the current work. The low efficiency of PdO (n-type) and SrO (p-type) gave an overview of the increasing generation electron efficiency via building the ohmic area on the GO and rGO surface using the Z-scheme mechanism. The efficiency of the NCP surface for destroying organic pollutants such as mixed dyes of Rhodamine B and methylene blue (RhB/MB), as against insecticides like imidacloprid, and the removal of heavy metals such as chromium ions was studied. The production of clean water against pollutants materials was investigated through adsorption and photocatalytic processes, electrochemical, and spectroscopy methods to detect the activity of NCP. The rate constant of the adsorption pollutants is 0.1776 min-1 (MB), 0.3489 min-1 (RhB), 0.3627 min-1 (imidacloprid), and 0.5729 min-1 (Cr3+). The photocatalytic rate recorded at 0.01218 min-1 (MB), 0.0096 min-1 (RhB), appeared degradation rate at 0.0086 min-1 (imidacloprid), 0.0019 min-1 (Cr6+), and 0.0471 min-1 (Cr3+). The adsorption and photocatalytic efficiency of nanocatalyst (NCP) was calculated at 91% (RhB), 93% (MB), 73% (imidacloprid), 63% (Cr3+), while the photocatalytic efficiency is 63% (RhB), 94% (MB), 86% (imidacloprid), 33% (Cr3+). The recyclability of NCP was tested for five cycles, and the efficiency was discovered at 55% after the fifth cycle. The cytotoxicity of NCP was studied to detect the safety of the fabricated materials. The study validates that the fabricated nanocomposite exhibits great potential as an innovative material for producing clean water.


Assuntos
Grafite , Paládio , Paládio/química , Adsorção , Catálise , Grafite/química , Estrôncio/química , Poluentes Químicos da Água/química , Óxidos/química , Rodaminas/química , Nanopartículas/química , Técnicas Eletroquímicas
3.
World J Microbiol Biotechnol ; 39(12): 345, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843704

RESUMO

Macroalgae has the potential to be a precious resource in food, pharmaceutical, and nutraceutical industries. Therefore, the present study was carried out to identify and quantify the phyco-chemicals and to assess the nutritional profile, antimicrobial, antioxidant, and anti-diabetic properties of Nitella hyalina extracts. Nutritional composition revealed0.05 ± 2.40% ash content, followed by crude protein (24.66 ± 0.95%), crude fat (17.66 ± 1.42%), crude fiber (2.17 ± 0.91%), moisture content (15.46 ± 0.48%) and calculated energy value (173.50 ± 2.90 Kcal/100 g). 23 compounds were identified through GC-MS analysis in ethyl acetate extract, with primary compounds being Palmitic acid, methyl ester, (Z)-9-Hexadecenoic acid, methyl ester, and Methyl tetra decanoate. Whereas 15 compounds were identified in n-butanol extract, with the major compounds being Tetra decanoic acid, 9-hexadecanoic acid, Methyl pentopyranoside, and undecane. FT-IR spectroscopy confirmed the presence of alcoholic phenol, saturated aliphatic compounds, lipids, carboxylic acid, carbonyl, aromatic components, amine, alkyl halides, alkene, and halogen compounds. Moreover, n-butanol contains 1.663 ± 0.768 mg GAE/g, of total phenolic contents (TPC,) and 2.050 ± 0.143 QE/g of total flavonoid contents (TFC), followed by ethyl acetate extract, i.e. 1.043 ± 0.961 mg GAE/g and 1.730 ± 0.311 mg QE/g respectively. Anti-radical scavenging effect in a range of 34.55-46.35% and 35.39-41.79% was measured for n-butanol and ethyl acetate extracts, respectively. Antimicrobial results declared that n-butanol extract had the highest growth inhibitory effect, followed by ethyl acetate extract. Pseudomonas aeruginosa was reported to be the most susceptible strain, followed by Staphylococcus aureus and Escherichia coli, while Candida albicans showed the least inhibition at all concentrations. In-vivo hypoglycemic study revealed that both extracts exhibited dose-dependent activity. Significant hypoglycemic activity was observed at a dose of 300 mg/kg- 1 after 6 h i.e. 241.50 ± 2.88, followed by doses of 200 and 100 mg/kg- 1 (245.17 ± 3.43 and 250.67 ± 7.45, respectively) for n-butanol extract. In conclusion, the macroalgae demonstrated potency concerning antioxidant, antimicrobial, and hypoglycemic properties.


Assuntos
Anti-Infecciosos , Nitella , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hipoglicemiantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , 1-Butanol , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Ésteres
4.
Cureus ; 15(8): e43918, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37746434

RESUMO

Background Understanding the relationships between obesity and lifestyle factors is essential for the effective prevention and management of obesity in youth. This study aimed to investigate the association between sociodemographic factors, lifestyle elements such as physical activity and social stress, and the prevalence of overweight and obesity among Saudi adolescents in the Aseer region. Methodology From December 2022 to March 2023, we conducted a cross-sectional study using the multi-stage stratified random sampling technique. The study included Saudi male and female adolescents aged 12-19 years attending middle and high schools. Ordinal logistic regression was used to analyze the association between the ordinal dependent variable, classified into weight groups (normal, overweight, obese), and the independent variables. Results Of the total of 512 individuals, 90.4% were aged ≥18 years, 77.5% were males, and 76.8% were urban residents. Of the studied population, 33.6% were overweight, and 20.5% were obese. The prevalence of obesity and overweight was significantly higher among males compared to females (20.9% vs. 19.1% and 36.5% vs. 23.5%, respectively). Multivariate analysis revealed the following factors to be associated with obesity and overweight: female gender (2.31, 95% CI = 1.45-3.71), age 12-17 years (0.53, 95% CI = 0.28-0.97), place of delivery (Tanoma) (2.32, 95% CI = 1.13-4.75), family size of over eight members (0.43, 95% CI = 0.24-0.74), family monthly income of over 20,000 SAR (3.79, 95% CI = 1.38-11.35), being smokers (0.26, 95% CI = 1.31-2.93), experiencing social stress (1.96, 95% CI = 1.96-2.93), engagement in physical activity less than three times a week (0.49, 95% CI = 0.32-0.75), and engagement in physical activity more than three times a week (0.36, 95% CI = 0.22-0.58). Conclusions These findings emphasize the importance of addressing demographic, socioeconomic, and lifestyle factors in combating childhood and adolescent obesity through targeted interventions.

5.
Bull Environ Contam Toxicol ; 110(1): 40, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627388

RESUMO

Predictive models were generated to evaluate the degree to which nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were absorbed by the leaves, stems and roots of forage sorghum in growing media comprising soil admixed with poultry manure concentrations of 0, 10, 20, 30 and 40 g/kg. The data revealed that the greatest contents of the majority of the metals were evident in the roots rather than in the stems and leaves. A bioaccumulation factor (BAF) < 1 was calculated for Cr, Fe, Ni, Pb and Zn; BAF values for Co, Cu, Mn and Cd were 3.99, 2.33, 1.44 and 1.40, respectively, i.e., > 1. Translocation factor values were < 1 for all metals with the exception of Co, Cr and Ni, which displayed values of 1.20, 1.67 and 1.35 for the leaves, and 1.12, 1.23 and 1.24, respectively, for the stems. The soil pH had a negative association with metal tissues in plant parts. A positive relationship was observed with respect to plant metal contents, electrical conductivity and organic matter quantity. The designed models exhibited a high standard of data precision; any variations between the predicted and experimentally observed contents for the nine metals in the three plant tissue components were nonsignificant. Thus, it was concluded that the presented predictive models constitute a pragmatic tool to establish the safety from risk to human well-being with respect to growing forage sorghum when cultivating media fortified with poultry manure.


Assuntos
Metais Pesados , Poluentes do Solo , Sorghum , Animais , Humanos , Solo/química , Esterco , Metais Pesados/análise , Aves Domésticas , Cádmio , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental
6.
Plants (Basel) ; 13(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38202417

RESUMO

This review delves into the mesmerizing technology of nano-agrochemicals, specifically pesticides and herbicides, and their potential to aid in the achievement of UN SDG 17, which aims to reduce hunger and poverty globally. The global market for conventional pesticides and herbicides is expected to reach USD 82.9 billion by 2027, growing 2.7% annually, with North America, Europe, and the Asia-Pacific region being the biggest markets. However, the extensive use of chemical pesticides has proven adverse effects on human health as well as the ecosystem. Therefore, the efficacy, mechanisms, and environmental impacts of conventional pesticides require sustainable alternatives for effective pest management. Undoubtedly, nano-agrochemicals have the potential to completely transform agriculture by increasing crop yields with reduced environmental contamination. The present review discusses the effectiveness and environmental impact of nanopesticides as promising strategies for sustainable agriculture. It provides a concise overview of green nano-agrochemical synthesis and agricultural applications, and the efficacy of nano-agrochemicals against pests including insects and weeds. Nano-agrochemical pesticides are investigated due to their unique size and exceptional performance advantages over conventional ones. Here, we have focused on the environmental risks and current state of nano-agrochemicals, emphasizing the need for further investigations. The review also draws the attention of agriculturists and stakeholders to the current trends of nanomaterial use in agriculture especially for reducing plant diseases and pests. A discussion of the pros and cons of nano-agrochemicals is paramount for their application in sustainable agriculture.

8.
Environ Sci Pollut Res Int ; 29(44): 66507-66518, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35503150

RESUMO

Considering its richness in organic and inorganic mineral nutrients, the recycling of sewage sludge (SS) is highly considered as a soil supplement in agriculture. However, the fate of hazardous heavy metal accumulation in the crops cultivated in SS amended soils is always a source of concern. Since nanoparticles are widely recognized to reduce heavy metal uptake by crop plants; thus, the present experiment deals with okra (Abelmoschus esculentus L. Moench) cultivation under the combined application of SS and TiO2-nanoparticles (NPs). Triplicated pot experiments were conducted using different doses of SS and TiO2-NPs such as 0 g/kg SS (control), 50 g/kg SS, 50 g/kg SS + TiO2, 100 g/kg SS, and 100 g/kg SS + TiO2, respectively. The findings of this study indicated that among the doses of treatment combinations investigated, 100 g/kg SS + TiO2 showed a significant (p < 0.05) increase in the okra plant yield (287.87 ± 4.06 g/plant) and other biochemical parameters such as fruit length (13.97 ± 0.54 cm), plant height (75.05 ± 3.18 cm), superoxide dismutase (SOD: 110.68 ± 3.11 µ/mg), catalase (CAT: 81.32 ± 3.52 µ/mg), and chlorophyll content (3.12 ± 0.05 mg/g fwt.). Also, the maximum contents of six heavy metals in the soil and cultivated okra plant tissues (fruit, stem, and root regions) followed the order of Fe > Mn > Cu > Zn > Cr > Cd using the same treatment. Bioaccumulation and health risk assessment indicated that foliar application of TiO2-NPs significantly reduced the fate of heavy metal accumulation under higher doses of SS application. Therefore, the findings of this study suggested that the combined use of SS and TiO2-NPs may be useful in ameliorating the negative consequences of heavy metal accumulation in cultivated okra crops.


Assuntos
Abelmoschus , Metais Pesados , Nanopartículas , Cádmio , Catalase , Clorofila , Produtos Agrícolas , Metais Pesados/análise , Minerais , Esgotos , Solo , Superóxido Dismutase , Titânio
9.
J Fungi (Basel) ; 8(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35205866

RESUMO

The present study focused on the use of sewage sludge (SS) as a casing material amendment and the potential uptake of metal elements by the cultivated white button (Agaricus bisporus: MS-39) mushroom. Laboratory experiments were performed under controlled environmental conditions to grow A. bisporus on the composted wheat straw substrate for 50 days. Different treatments (0, 50, 100, 150, and 200 g/kg) of casing material were prepared by mixing garden and dried SS and applied on the mushroom substrate after proper sterilization. The results revealed that SS application was significant (p < 0.05) in accelerating mushroom yield with a biological efficiency of 65.02% for the mixing rate of 200 g/kg. Moreover, the maximum bioaccumulation of selected metal elements (Cu, Cr, Cd, Fe, Mn, and Zn) was observed using the same treatment. Additionally, the multiple regression models constructed for the uptake prediction of metal elements showed an acceptable coefficient of determination (R2 > 0.9900), high model efficiency (ME > 0.98), and low root mean square error (RMSE < 0.410) values, respectively. The findings of this study represent sustainable use of SS for the formulation of mushroom casing material contributing toward synergistic agro-economy generation and waste management.

10.
J Fungi (Basel) ; 8(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35205888

RESUMO

The soil-borne pathogens Rhizoctonia solani and Sclerotium rolfsii have emerged as major pathogens of radish (Raphanus sativus) worldwide. The induction of soil suppressive of radish root rot disease was evaluated in soil repeatedly inoculated with R. solani, nonpathogenic binucleate Rhizoctonia sp. AG-A W1 (BNR) and S. rolfsii. The repeated inoculations of soil with R. solani and BNR significantly suppressed the disease severity of R. solani and S. rolfsii compared to the control. In contrast, the repeated inoculation of soil with S. rolfsii significantly suppressed only the pathogen, S. rolfsii. The community structure was examined using PCR-DGGE (polymerase chain reaction denaturing gradient gel electrophoresis) method. The bands of Trichoderma sp. were observed in the first, second and third inoculations of the soil with BNR. Similarly, bands of Trichoderma sp. were observed in the second and third inoculations of the soil with S. rolfsii and R. solani. Compared to the control, disease severity was significantly reduced in the soil repeatedly inoculated with S. rolfsii and R. solani . In conclusion, Trichoderma species were accumulated in specific patterns depending on the applied fungal inoculum in the suppressive soil.

11.
Geosci Front ; 13(6): 101373, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37521134

RESUMO

The novel coronavirus, SARS-CoV-2, which has caused millions of death globally is recognized to be unstable and recalcitrant in the environment, especially in the way it has been evolving to form new and highly transmissible variants. Of particular concerns are human-environment interactions and the handling and reusing the environmental materials, such as effluents, sludge, or biosolids laden with the SARS-CoV-2 without adequate treatments, thereby suggesting potential transmission and health risks. This study assesses the prevalence of SARS-CoV-2 RNA in effluents, sludge, and biosolids. Further, we evaluate the environmental, ecological, and health risks of reusing these environmental materials by wastewater/sludge workers and farmers. A systematic review of literature from the Scopus database resulted in a total of 21 articles (11 for effluents, 8 for sludge, and 2 for biosolids) that met the criteria for meta-analysis, which are then subdivided into 30 meta-analyzed studies. The prevalence of SAR-CoV-2 RNA in effluent and sludge based on random-effect models are 27.51 and 1012.25, respectively, with a 95% CI between 6.14 and 48.89 for the effluent, and 104.78 and 1019.71 for the sludge. However, the prevalence of SARS-CoV-2 RNA in the biosolids based on the fixed-effect model is 30.59, with a 95% CI between 10.10 and 51.08. The prevalence of SARS-CoV-2 RNA in environmental materials indicates the inefficiency in some of the treatment systems currently deployed to inactivate and remove the novel virus, which could be a potential health risk concern to vulnerable wastewater workers in particular, and the environmental and ecological issues for the population at large. This timely review portends the associated risks in handling and reusing environmental materials without proper and adequate treatments.

12.
PLoS One ; 16(11): e0259289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34735516

RESUMO

Arsenic (As) contamination is a serious threat to agriculture and human health worldwide. It can adversely affect the growth attributes of food crops. On the other hand, using thiourea (TU) to ameliorate As stress is an economically consistent approach. However, there is a knowledge gap regarding the combined use of TU and Sewage sludge (SS). SS is considered important, unutilized biomass. It can be used as a fertilizer that has high organic matter and nutrients. Therefore, the current study was performed to evaluate TU and SS sole and combined responses under As toxicity on two wheat genotypes (Markaz 19 and Ujala 16). There were four treatments control (As 50 mg kg-1), SS (30 g kg-1)+TU (6.5 mM)+As, TU+As and SS+As applied with four replications. Results revealed that SS+TU performed significantly better over SS, TU and control for improvement in root and shoot fresh and dry weight of wheat varieties Markaz 19 and Ujala 16 under As toxicity. A significant decrease in POD, SOD and APX of Markaz 19 and Ujala 16 also validated the effective functioning of SS+TU over control. The maximum increase of 71 and 77% was noted in phosphorus, where SS+TU was applied over control in Markaz 19 and Ujala 16, respectively. In conclusion, SS+TU is a better approach than the sole application of SS and TU under As contamination for improvement in wheat growth attributes. More investigations are recommended at the field level under different As contamination and agro-climatic zones to declare SS+TU an effective amendment to mitigate As toxicity in wheat.


Assuntos
Arsênio/toxicidade , Esgotos/química , Tioureia/farmacologia , Triticum/crescimento & desenvolvimento , Biomassa , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Poluição Ambiental , Fotossíntese , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Triticum/efeitos dos fármacos
13.
Plants (Basel) ; 10(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34834726

RESUMO

This study aimed to synthesize silver nanoparticles (AgNPs) by pomegranate and orange peel extracts using a low concentration of AgNO3 solution to controlearly blight of tomato caused by Alternaria solani. The pathogen was isolated from infected tomato plants growing in different areas of Saudi Arabia. The isolates of this pathogen were morphologically and molecularly identified. Extracts from peels of pomegranate and orange fruits effectively developed a simple, quick, eco-friendly and economical method through a synthesis of AgNPs as antifungal agents against A. solani. Phenolic content in the pomegranate peel extract was greater than orange peel extract. Phenolic compounds showed a variation of both peel extracts as identified and quantified by High-Performance Liquid Chromatography. The phenolic composition displayed variability as the pomegranate peel extract exhibited an exorbitant amount of Quercitrin (23.62 mg/g DW), while orange peel extract recorded a high amount of Chlorogenic acid (5.92 mg/g DW). Biosynthesized AgNPs were characterized using UV- visible spectroscopy which recorded an average wavelength of 437 nm and 450 nm for pomegranate and orange peels, respectively. Fourier-transform infrared spectroscopy exhibited 32x73.24, 2223.71, 2047.29 and 1972.46 cm-1, and 3260.70, 1634.62, 1376.62 and 1243.76 cm-1 for pomegranate and orange peels, respectively. Transmission electron microscopy showed spherical shape of nanoparticles. Zetasizer analysis presented negative charge values; -16.9 and -19.5 mV with average particle sizes 8 and 14 nm fin case of pomegranate and orange peels, respectively. In vitro, antifungal assay was done to estimate the possibility of biosynthesized AgNPs and crude extracts of fruit peels to reduce the mycelial growth of A. solani. AgNPs displayed more fungal mycelial inhibition than crude extracts of two peels and AgNO3. We recommend the use of AgNPs synthesized from fruit peels for controlling fungal plant pathogens and may be applied broadly and safely in place by using the chemical fungicides, which display high toxicity for humans.

14.
Sensors (Basel) ; 21(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204099

RESUMO

In site-specific management, rapid and accurate identification of crop stress at a large scale is critical. Radiometric ground-based data and satellite imaging with advanced spatial and spectral resolution allow for a deeper understanding of crop stress and the level of stress in a given area. This research aimed to assess the potential of radiometric ground-based data and high-resolution QuickBird satellite imagery to determine the leaf area index (LAI), biomass fresh weight (BFW) and chlorophyll meter (Chlm) of maize across well-irrigated, water stress and salinity stress areas in the Nile Delta of Egypt. Partial least squares regression (PLSR) and multiple linear regression (MLR) were evaluated to estimate the three measured traits based on vegetation spectral indices (vegetation-SRIs) derived from these methods and their combination. Maize field visits were conducted during the summer seasons from 28 to 30 July 2007 to collect ground reference data concurrent with the acquisition of radiometric ground-based measurements and QuickBird satellite imagery. The results showed that the majority of vegetation-SRIs extracted from radiometric ground-based data and high-resolution satellite images were more effective in estimating LAI, BFW, and Chlm. In general, the vegetation-SRIs of radiometric ground-based data showed higher R2 with measured traits compared to the vegetation-SRIs extracted from high-resolution satellite imagery. The coefficient of determination (R2) of the significant relationships between vegetation-SRIs of both methods and three measured traits varied from 0.64 to 0.89. For example, with QuickBird high-resolution satellite images, the relationships of the green normalized difference vegetation index (GNDVI) with LAI and BFW showed the highest R2 of 0.80 and 0.84, respectively. Overall, the ground-based vegetation-SRIs and the satellite-based indices were found to be in good agreement to assess the measured traits of maize. Both the calibration (Cal.) and validation (Val.) models of PLSR and MLR showed the highest performance in predicting the three measured traits based on the combination of vegetation-SRIs from radiometric ground-based data and high-resolution QuickBird satellite imagery. For example, validation (Val.) models of PLSR and MLR showed the highest performance in predicting the measured traits based on the combination of vegetation-SRIs from radiometric ground-based data and high-resolution QuickBird satellite imagery with R2 (0.91) of both methods for LAI, R2 (0.91-0.93) for BFW respectively, and R2 (0.82) of both methods for Chlm. The models of PLSR and MLR showed approximately the same performance in predicting the three measured traits and no clear difference was found between them and their combinations. In conclusion, the results obtained from this study showed that radiometric ground-based measurements and high spectral resolution remote-sensing imagery have the potential to offer necessary crop monitoring information across well-irrigated, water stress and salinity stress in regions suffering lack of freshwater resources.


Assuntos
Imagens de Satélites , Zea mays , Clorofila , Egito , Análise dos Mínimos Quadrados
15.
Environ Monit Assess ; 193(8): 510, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34302207

RESUMO

Prediction models were developed to estimate the extent to which aluminium, chromium, copper, iron, manganese, nickel, lead, and zinc were absorbed in the grains, leaves, stems, and roots of Sorghum bicolor cultivated in soil with various amendment rate of sewage sludge (0, 10, 20, 30, 40, and 50 g/kg) under greenhouse conditions. It was found that, aside from lead, all the examined metals occurred in significantly higher content in the roots compared to aerial tissues. Furthermore, the r-values were significantly negative between the bioconcentration factors of all metals, apart from aluminium and lead, and soil pH, whereas they were significantly positive between the bioconcentration factors, apart from lead, and soil organic matter content (OM). The r-values were typically significantly positive between the levels of all eight metals in the investigated tissues and in the soil. Moreover, the content of all the eight metals in the tissues exhibited a significant negative r-value with soil pH but a significant positive r-value with soil OM. The eight metal contents in the tissues given by the prediction models were quite similar to the real values, suggesting that the created models performed well, as shown by t-tests. It was thus concluded that prediction models were a viable option for evaluating how safe it was to grow S. bicolor in soils with sewage sludge content and at the same time for keeping track of possible human health hazards.


Assuntos
Metais Pesados , Poluentes do Solo , Sorghum , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Esgotos/análise , Solo , Poluentes do Solo/análise
16.
PLoS One ; 16(6): e0252229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086714

RESUMO

The aim of the present investigation was to determine the concentration of heavy metals in the different organs of Pisum sativum L. (garden pea) grown in contaminated soils in comparison to nonpolluted soils in the South Cairo and Giza provinces, Egypt, and their effect on consumers' health. To collect soil and plant samples from two nonpolluted and two polluted farms, five quadrats, each of 1 m2, were collected per each farm and used for growth measurement and chemical analysis. The daily intake of metals (DIM) and its associated health risks (health risk index (HRI) were also assessed. The investigated heavy metals were cadmium (Cd), arsenic (As), chromium (Cr), copper (Cu), nickel (Ni), iron (Fe), manganese (Mn), zinc (Zn), silver (Ag), cobalt (Co) and vanadium (V). Significant differences in soil heavy metals, except As, between nonpolluted and polluted sites were recorded. Fresh and dry phytomass, photosynthetic pigments, fruit production, and organic and inorganic nutrients were reduced in the polluted sites, where there was a high concentration of heavy metals in the fruit. The bioaccumulation factor for all studied heavy metals exceeded 1 in the polluted sites and only Pb, Cu and Mn exceeded 1 in the nonpolluted sites. Except for Fe, the DIM of the studied heavy metals in both sites did not exceed 1 in either children or adults. However, the HRI of Pb, Cd, Fe, and Mn in the polluted plants and Pb in the nonpolluted ones exceeded 1, indicating significant potential health risks to consumers. The authors recommend not to eat garden peas grown in the polluted sites, and farmers should carefully grow heavy metals non-accumulating food crops or non-edible plants for other purposes such as animal forages.


Assuntos
Metais Pesados/efeitos adversos , Pisum sativum/efeitos dos fármacos , Poluentes do Solo/efeitos adversos , Solo/química , Bioacumulação/efeitos dos fármacos , Produtos Agrícolas/efeitos dos fármacos , Egito , Monitoramento Ambiental/métodos , Poluição Ambiental/efeitos adversos , Frutas/efeitos dos fármacos , Saúde , Humanos , Risco
17.
Molecules ; 26(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807313

RESUMO

L-glutaminase is an important anticancer agent that is used extensively worldwide by depriving cancer cells of L-glutamine. The marine bacterium, Halomonas meridian was isolated from the Red Sea and selected as the more active L-glutaminase-producing bacteria. L-glutaminase fermentation was optimized at 36 h, pH 8.0, 37 °C, and 3.0% NaCl, using glucose at 1.5% and soybean meal at 2%. The purified enzyme showed a specific activity of 36.08 U/mg, and the molecular weight was found to be 57 kDa by the SDS-PAGE analysis. The enzyme was highly active at pH 8.0 and 37 °C. The kinetics' parameters of Km and Vmax were 12.2 × 10-6 M and 121.95 µmol/mL/min, respectively, which reflects a higher affinity for its substrate. The anticancer efficiency of the enzyme showed significant toxic activity toward colorectal adenocarcinoma cells; LS 174 T (IC50 7.0 µg/mL) and HCT 116 (IC50 13.2 µg/mL). A higher incidence of cell death was observed with early apoptosis in HCT 116 than in LS 174 T, whereas late apoptosis was observed in LS 174 T more than in HCT 116. Also, the L-glutaminase induction nuclear fragmentation in HCT 116 was more than that in the LS 174T cells. This is the first report on Halomonas meridiana as an L-glutaminase producer that is used as an anti-colorectal cancer agent.


Assuntos
Antineoplásicos , Neoplasias Colorretais/patologia , Glutaminase , Halomonas/enzimologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Glutaminase/farmacologia , Células HCT116 , Humanos , Oceano Índico , Cinética , Peso Molecular , Especificidade por Substrato
18.
Food Sci Nutr ; 8(10): 5298-5308, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33133533

RESUMO

Fungal and mycotoxins contamination of food and poultry feeds can occur at each step along the chain from grain production, storage, and processing. A total of 200 samples comprising of mixed poultry feedstuffs (n = 100) and their ingredients (n = 100) were collected from Riyadh, Alhassa, Qassium, and Jeddah cities in Saudi Arabia. These samples were screened for contamination by fungi. Penicillium chrysogenum was the predominant species taking into its account and frequency, respectively, in both mixed poultry feedstuff and barley samples (4,561.9 and 687 fungal colony-forming units (CFU)/g) and (66% and 17%). Moisture content was an important indicator for the count of fungi and ochratoxin A. Ochratoxin analysis of plate cultures was performed by a HPLC technique. Sample of mixed poultry feedstuff which was collected from Jeddah displayed the highest level of ochratoxin (14.8 µg/kg) and moisture content (11.5%). Corn grains samples were highly contaminated by ochratoxin A (450 and 423 µg/kg) and recorded the highest moisture contents (14.1 and 14.5%). Ochratoxin A production in fungal species isolated from mixed poultry feedstuff samples were high with P. verrucosum (5.5 µg/kg) and A. niger (1.1 µg/kg). In sorghum and corn grains, the highest ochratoxins producing species were P. viridicatum (5.9 µg/kg) and A. niger (1.3 µg/kg), respectively. Sixty-three isolates of A. niger were ochratoxigenic, and all of them showed the presence of pks genes using PKS15C-MeT and PKS15KS primer pairs. The detection technique of A. niger in poultry feedstuff samples described in the present study was successfully used as a rapid and specific protocol for early detection of A. niger without cultivation on specific media.

19.
Saudi J Biol Sci ; 27(7): 1811-1817, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32565700

RESUMO

Red palm weevil (Rhynchophorus ferrugineus) is a voracious pest of date palm worldwide. Pakistan ranks sixth in date palm production globally. Losses to date palm plantations in Pakistan sometimes surpass 10%-20%. Most of the traditional management strategies used by farmers have been found insignificant to combat this voracious pest. The entomopathogenic fungi, Beauveria bassiana [QA-3(L) and QA-3(H)] and insecticides, Nitenpyram (Active 10% SL) [NIT (L) and NIT (H)] were applied to larval (2nd, 4th, and 6th), pupal and adult stages of R. ferrugienus. Integration or alone application of fungi with insecticides at different concentration under laboratory conditions. Combined application was depicted additive and synergistic interactions. Contrarily, highest cumulative mortality (100%) was recorded in 2nd instar larvae as compared to later instar larvae at combined application. The maximum pupal and adult mortality remained 89% and 66% respectively after treatment with [QA-3 (H) + NIT (L)]. The combination of B. bassiana at higher concentration whereas Nitenpyram at lower dose was found more lethal to larvae, pupae and adults of R. ferrugineus. This signifies the need of combining B. bassiana and bio-rational insecticides that can reduce the cost of management with least harm to environment and natural enemies.

20.
Sci Rep ; 10(1): 8815, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483188

RESUMO

Biobased degradable plastics have received significant attention owing to their potential application as a green alternative to synthetic plastics. A dye-based procedure was used to screen poly-3-hydroxybutyrate (PHB)-producing marine bacteria isolated from the Red Sea, Saudi Arabia. Among the 56 bacterial isolates, Pseudodonghicola xiamenensis, identified using 16S rRNA gene analyses, accumulated the highest amount of PHB. The highest PHB production by P. xiamenensis was achieved after 96 h of incubation at pH 7.5 and 35 °C in the presence of 4% NaCl, and peptone was the preferred nitrogen source. The use of date syrup at 4% (w/v) resulted in a PHB concentration of 15.54 g/L and a PHB yield of 38.85% of the date syrup, with a productivity rate of 0.162 g/L/h, which could substantially improve the production cost. Structural assessment of the bioplastic by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy revealed the presence of methyl, hydroxyl, methine, methylene, and ester carbonyl groups in the extracted polymer. The derivative products of butanoic acid estimated by gas chromatography-mass spectrometry [butanoic acid, 2-amino-4-(methylseleno), hexanoic acid, 4-methyl-, methyl ester, and hexanedioic acid, monomethyl ester] confirmed the structure of PHB. The present results are the first report on the production of a bioplastic by P. xiamenensis, suggesting that Red Sea habitats are a potential biological reservoir for novel bioplastic-producing bacteria.


Assuntos
Plásticos Biodegradáveis/metabolismo , Biopolímeros/biossíntese , Hidroxibutiratos/metabolismo , Microbiologia Industrial/métodos , Resíduos Industriais , Phoeniceae , Poliésteres/metabolismo , Rhodobacteraceae/metabolismo , Técnicas Bacteriológicas , Plásticos Biodegradáveis/química , Biopolímeros/química , Meios de Cultura , Cromatografia Gasosa-Espectrometria de Massas , Sedimentos Geológicos/microbiologia , Hidroxibutiratos/química , Oceano Índico , Ressonância Magnética Nuclear Biomolecular , Filogenia , Preparações de Plantas , Poliésteres/química , Rhodobacteraceae/classificação , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Ribotipagem , Água do Mar/microbiologia , Cloreto de Sódio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA