Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 103: 129702, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490620

RESUMO

C3-symmetry is a type of star-shaped molecule consisting of a central core and three symmetrically attached chains. These molecules are used in drug discovery due to their unique three-fold rotational symmetry, which allows for specific binding interactions and improved molecular recognition. In this text, we provide an overview of synthetic approaches with C3-symmetry as a pharmaceutical tool: progress, challenges, and opportunities. C3-symmetric ligands offer both challenges and opportunities in drug design. Their unique symmetry can enhance binding interactions, but careful consideration of rigidity, synthetic complexity, and target compatibility is crucial. Further research and advancements in synthetic methods and modeling tools will likely drive their exploration in drug discovery, leading to the discovery of potent C3-symmetric ligands.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Ligantes
2.
RSC Adv ; 14(9): 5797-5811, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362067

RESUMO

In this study, poly(luminol-co-1,8-diaminonaphthalene) (PLim-DAN) was synthesized and subsequently modified with MWCNTs and CeO2 NPs. The synthesized nanocomposites were analyzed using IR, SEM, TEM, and XRD. Furthermore, a comprehensive set of thermal behavior measurements were taken using TGA/DTG analysis. Next, the electroactivity of the developed nanocomposites was tested as an electrochemical sensor to measure the concentration of Cr3+ ions in phosphate buffers. The GCE adapted with the PLim-DAN/CeO2/CNTs-10% nanocomposite (NC) exhibited the highest current response among the other compositions and copolymers. The fabricated nanocomposite sensor showed high sensitivity, with a value of 19.78 µA µM-1 cm-2, and a low detection limit of 4.80 ± 0.24 pM. The analytical performance was evaluated by plotting a current calibration curve versus the concentration of Cr3+ ions. It was found to be linear (R2 = 0.9908) over the range of 0.1 nM to 0.1 mM, identified as the linear dynamic range (LDR). This electrochemical sensor demonstrated that it could be a useful tool for environmental monitoring by accurately detecting and measuring carcinogenic Cr3+ ions in real-world samples.

3.
RSC Adv ; 14(3): 1757-1781, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38192311

RESUMO

Multicomponent polymerization (MCP) is an innovative field related to polymer-based chemistry that offers numerous advantages derived from multicomponent reactions (MCRs). One of the key advantages of MCP is its ability to achieve high efficiency. Additionally, MCP offers other advantages, including operational simplicity, mild reaction conditions, and atom economy. MCP is a versatile technique that is used for synthesizing a wide range of analogs from several classes of heterocyclic compounds. The ring structures of heterocyclic polymers give them different mechanical, photophysical, and electrical properties to other types of polymers. Because of their unique properties, heterocyclic polymers have been widely utilized in various significant applications. MCRs are a type of chemical reaction that can be used to synthesize a wide variety of compounds in a single pot, which allows researchers to quickly assemble libraries of compounds. The development of MCPs from MCRs has made it easier to access a library of polymers with tunable structures. However, MCPs related to alkynes or acetylene triple bonds have more potential. In this review study, we provide an overview of the synthesis of heteroatom-functional polymers and alkyne-based development or other reactions such as Cu-catalyzed, catalyst-free, MCCP, MCTPs, green monomers, A3 coupling reactions, Passerini reactions, and sequence- and controlled-multicomponent polymerization. The up-to-date progress provides a convenient and efficient kind of approach related to heteroatoms and MCP synthesis, and perspectives in terms of future directions are also discussed in the study.

4.
RSC Adv ; 14(4): 2491-2503, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38223695

RESUMO

Hydrophobic alginic acid derivatives were synthesized with various aliphatic hydrocarbon chains for fat removal in an analysis of multi-pesticide residues in a fatty food sample. First, alginic acid was chemically modified using eco-friendly ultrasound-assisted esterification with different alcohols, namely, hydrophobic alginic acid-methanol (HAA-C1), hydrophobic alginic acid-butanol (HAA-C4), and hydrophobic alginic acid-octadecanol (HAA-C18). The degree of esterification (DE) was determined by titration, and the results ranged from 57.3% to 63.7%. The physicochemical properties of the synthesized hydrophobic alginic acids (HAAs) were studied using FT-IR, XRD, TGA, and FE-SEM. Subsequently, the performance of the HAAs was checked and evaluated for the removal of fat from a fatty food sample by calculating the fat removal percentage and the determination of 214 pesticide residues in the fatty food sample. For the fat removal percentage application, the HAAs were able to efficiently remove between 77% and 83% of the fat; HAA-C18 had the highest percentage. Regarding the pesticide residue application, HAAs were also able to remove the fat content from the fatty food sample without a significant effect on the pesticide substances. The recoveries of the detected pesticide compounds were between 80% and 120% for all HAAs. However, there were various missing pesticide compounds for HAAs. The number of missing pesticide compounds was 19, 6, and 33 for HAA-C1, HAA-C4, and HAA-C18, respectively. HAA-C4 had medium hydrophobicity and it lost fewer pesticides than the other HAAs. This was because the multi-pesticide mixture had various classes of chemical structure; hence, it had different polarity powers. We concluded that HAAs are developable and applicable to be safely used as a green material in diverse fatty food sample analysis applications.

5.
J Environ Manage ; 353: 120179, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38295641

RESUMO

Natural soil minerals often contain numerous impurities, resulting in comparatively lower catalytic activity. Tropical soils are viewed as poor from soil organic matter, cations, and anions, which are considered the main impurities in the soil that are restricted to utilizing natural minerals as a catalyst. In this regard, the dissolved iron and hematite crystals that presented naturally in tropical soil were evaluated to activate oxidants and degrade pyrene. The optimum results obtained in this study were 73 %, and the rate constant was 0.0553 h-1 under experimental conditions [pyrene] = 300 mg/50 g, pH = 7, T = 55 °C, airflow = 260 mL/min, [Persulfate (PS)] = 1.0 g/L, and humic acid (HA) ( % w/w) = 0.5 %. The soil characterization analysis after the remediation process showed an increase in moieties and cracks of the soil aggregate, and a decline in the iron and aluminium contents. The scavengers test revealed that both SO4•- and O2•- were responsible for the pyrene degradation, while HO• had a minor role in the degradation process. In addition, the monitoring of by-products, degradation pathways, and toxicity assessment were also investigated. This system is considered an efficient, green method, and could provide a step forward to develop low-cost soil remediation for full-scale implementation.


Assuntos
Ferro , Poluentes do Solo , Ferro/química , Solo/química , Poluentes do Solo/química , Minerais/química , Pirenos , Oxidantes , Oxirredução
6.
RSC Adv ; 13(47): 33221-33230, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37954418

RESUMO

Hydrophobic carboxymethyl cellulose (CMC) biopolymers were fabricated for the removal of fat from food sample matrices. The hydrophobic CMCs were synthesised via the esterification of CMC with three alcohols with carbon chains of different lengths, methanol, butanol, and octadecanol, in the presence of sulfuric acid. The structure of the three synthesised hydrophobic CMCs was verified using FT-IR, and the physicochemical properties were investigated by TGA, SEM, and X-ray. Characterization confirmed the successful synthesis of the hydrophobic CMCs and that the hydrophobic groups are embedded in the sorbent biopolymer to interact with fat and reduce the fat content of the sample extract. Moreover, the performance of the fabricated hydrophobic CMCs was studied in two applications: fat removal and the determination of nitrofuran (NF) metabolites in fat samples. In the first application, excellent results were observed for fat removal; the highest percentage of fat removed from food sample extracts was 94.2% and the lowest was 88.5%. Successful results were also observed in the determination of NF metabolites in fat samples, as the final extract was clear and pure using the hydrophobic CMCs, while it was turbid for the control sample. In addition, the recovery of four NF metabolites was in the range of 97-117%. In general, the hydrophobic CMCs showed promising and satisfactory results, with CMC-C18 exhibiting the best results. The NF detection method was validated using CMC-C18 in three spiking levels; 0.5, 1.0 and 1.5 µg kg-1. The average recoveries of NF range between 83.3 to 104.3%, and the intra-day precision was determined by coefficient of variation, which was below 10% for all NF. The limit of detection and limit of quantification were between 0.6 to 0.9 and 0.20 to 0.28 µg kg-1 respectively. For linearity, the correlation coefficient (r2) was higher than 0.99 for NF metabolites. Overall, the hydrophobic CMCs can be further developed and safely used as green sorbents in food analysis applications.

7.
Neurol Int ; 15(3): 954-966, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37606394

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease of old age. Accumulation of ß-amyloid peptide (Aß) and mitochondrial dysfunction results in chronic microglial activation, which enhances neuroinflammation and promotes neurodegeneration. Microglia are resident macrophages of the brain and spinal cord which play an important role in maintaining brain homeostasis through a variety of phenotypes, including the pro-inflammatory phenotype and anti-inflammatory phenotypes. However, persistently activated microglial cells generate reactive species and neurotoxic mediators. Therefore, inhibitors of microglial activation are seen to have promise in AD control. The modified TPP/MoS2 QD blend is a mitochondrion-targeted nanomaterial that exhibits cytoprotective activities and antioxidant properties through scavenging free radicals. In the present study, the cell viability and cytotoxicity of the DSPE-PEG-TPP/MoS2 QD blend on microglial cells stimulated by Aß were investigated. The levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were also assessed. In addition, pro-inflammatory and anti-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), transforming growth factor beta (TGF-ß), inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-I) were measured in the presence or absence of the DSPE-PEG-TPP/MoS2 QD blend on an immortalized microglia cells activated by accumulation of Aß. We found that the DSPE-PEG-TPP/MoS2 QD blend was biocompatible and nontoxic at specific concentrations. Furthermore, the modified TPP/MoS2 QD blend significantly reduced the release of free radicals and improved the mitochondrial function through the upregulation of MMP in a dose-dependent manner on microglial cells treated with Aß. In addition, pre-treatment of microglia with the DSPE-PEG-TPP/MoS2 QD blend at concentrations of 25 and 50 µg/mL prior to Aß stimulation significantly inhibited the release and expression of pro-inflammatory cytokines, such as IL-1ß, IL-6, TNF-α, and iNOS. Nevertheless, the anti-inflammatory cytokines TGF-ß and Arg-I were activated. These findings suggest that the modified TPP/MoS2 QD blend reduced oxidative stress, inflammation and improved the mitochondrial function in the immortalized microglial cells (IMG) activated by Aß. Overall, our research shows that the DSPE-PEG-TPP/MoS2 QD blend has therapeutic promise for managing AD and can impact microglia polarization.

9.
Chem Mater ; 35(15): 5914-5923, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576588

RESUMO

A group of small-molecule hole-transporting materials (HTMs) that are based on fluorenylidene fragments were synthesized and tested in perovskite solar cells (PSCs). The investigated compounds were synthesized by a facile two-step synthesis, and their properties were measured using thermoanalytical, optoelectronic, and photovoltaic methods. The champion PSC device that was doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) reached a power conversion efficiency of 22.83%. The longevity of the PSC device with the best performing HTM, V1387, was evaluated in different conditions and compared to that of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD), showing improved stability. This work provides an alternative HTM strategy for fabricating efficient and stable PSCs.

10.
RSC Adv ; 13(29): 19817-19835, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37404316

RESUMO

Polybenzoxazine (PBz) is an excellent and highly intriguing resin for various sophisticated uses. Benzoxazines have piqued the curiosity of academics worldwide because of their peculiar properties. Nonetheless, most benzoxazine resin manufacturing and processing methods, notably bisphenol A-based benzoxazine, rely on petroleum resources. Because of the environmental consequences, bio-based benzoxazines are being researched as alternatives to petroleum-based benzoxazines. As a result of the environmental implications, bio-based benzoxazines are being developed to replace petroleum-based benzoxazines, and they are gaining traction. Bio-based polybenzoxazine, epoxy, and polysiloxane-based resins have piqued the interest of researchers in coatings, adhesives, and flame-retardant thermosets in recent years due to their anticorrosion, ecologically friendly, affordable, and low water absorption properties. As a result, numerous scientific studies and patents on polybenzoxazine continues to rise in polymer research. Based on its mechanical, thermal, and chemical characteristics, bio-based polybenzoxazine has several applications, including coatings (anticorrosion and antifouling), adhesives (highly crosslinked network, outstanding mechanical and thermal capabilities), and flame retardants (with the high charring capability). This review reports an overview of polybenzoxazine, highlighting the current advances and progress in synthesizing bio-based polybenzoxazine, their properties, and their use in coating applications.

11.
J Mol Model ; 29(8): 244, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439878

RESUMO

CONTEXT: In this work, a series of heterocyclic alkenes were prepared by the reaction of 2-hydroxy-1-naphthaldehyde with various heterocyclic active methylene compounds via Knoevenagel condensation reaction using mesoporous silica, MCM 41, supported perchloric acid as an efficient green catalytic system under solvent-free conditions. A comparative study of the conventional method vs the green method was also reported with the same raw materials. 1H NMR, 13C NMR, IR, and mass spectroscopic techniques were used for the characterization of synthesized compounds. METHODS: Computational study was performed for these compounds by applying density functional theory (DFT) at M06 functional and 6-311G (d,p) basis set to interpret the electronic structures and counter check the experimental findings. The frequency analysis with aforementioned levels of DFT was performed to confirm the stability associated with optimized geometries. The true minimum for the optimized geometries for 1, 2, and 3 was achieved as indicated by the absence of negative eigenvalues in all the calculated frequencies. Additionally, natural bond orbitals (NBOs) and nonlinear optical (NLO) properties were explored utilizing the aforementioned level and basis set combination via DFT, whereas the frontier molecular orbitals (FMOs) evaluation was done at time-dependent density functional theory TDDFT at M06/6-311G(d,p). The global reactivity parameters were also calculated using the FMO data. These computation-based outcomes were found in good agreement with the experimental findings.


Assuntos
Compostos Heterocíclicos , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Espectroscopia de Ressonância Magnética
12.
RSC Adv ; 13(27): 18382-18395, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37342813

RESUMO

A highly selective and ultra-sensitive electrochemical sensing probe was proposed by combining sulfated-carboxymethyl cellulose (CMC-S) and a functionalized-multiwalled carbon nanotube (f-MWNT) nano-composite with high conductivity and durability. The CMC-S/MWNT nanocomposite was impregnated on a glassy carbon electrode (GCE) to construct the non-enzymatic and mediator-free electrochemical sensing probe for trace detection of As(iii) ions. The fabricated CMC-S/MWNT nanocomposite was characterized by FTIR, SEM, TEM, and XPS. Under the optimized experimental conditions, the sensor exhibited the lowest detection limit of 0.024 nM, a high sensitivity (69.93 µA nM-1 cm-2) with a good linear relationship in the range of 0.2-90 nM As(iii) concentration. The sensor demonstrated strong repeatability, with the current response continuing at 84.52% after 28 days of use, in addition to good selectivity for the determination of As(iii). Additionally, with recovery ranging from 97.2% to 107.2%, the sensor demonstrated comparable sensing capability in tap water, sewage water, and mixed fruit juice. The electrochemical sensor for detecting trace levels of As(iii) in actual samples is anticipated to be produced by this effort and is expected to possess great selectivity, good stability, and sensitivity.

13.
Sci Rep ; 13(1): 6724, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185806

RESUMO

This study examines the utilization of the expired drug, namely ampicillin, as a mild steel corrosion inhibitor in an acidic environment. The inhibitor was evaluated using weight loss and electrochemical measurement accompanied with surface analytical techniques. The drug showed a potential inhibitory efficiency of > 95% at 55 °C. The inclusion of the inhibitor increased the charge transfer resistance at the steel-solution interface, according to impedance analyses. According to potentiodynamic polarisation measurements, expired ampicillin drug significantly decreased the corrosion current density and worked as a mixed-type corrosion inhibitor. The Langmuir adsorption isotherm was followed by the adsorption of ampicillin drug on the steel substrate, exhibiting an association of physical and chemical adsorption mechanisms. The surface study performed using contact angle and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) measurements supported the inhibitor adsorption on the steel substrate.


Assuntos
Ácido Clorídrico , Aço , Ácido Clorídrico/química , Aço/química , Corrosão , Ácidos , Adsorção
14.
RSC Adv ; 13(21): 14317-14339, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179987

RESUMO

C3-symmetric star-shaped materials are an emerging category of porous organic polymers with distinctive properties such as permanent porosity, good thermal and chemical stability, high surface area, and appropriate functionalization that promote outstanding potential in various applications. This review is mostly about constructing benzene or s-triazine rings as the center of C3-symmetric molecules and using side-arm reactions to add functions to these molecules. Over and above this, the performance of various polymerization processes has been additionally investigated in detail, including the trimerization of alkynes or aromatic nitriles, polycondensation of monomers with specific functional groups, and cross-coupling building blocks with benzene or triazine cores. Finally, the most recent progress in biomedical applications for C3-symmetric materials based on benzene or s-triazine have been summarized.

15.
OMICS ; 27(4): 171-179, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043379

RESUMO

Signal transducer and activator of transcription 6 (STAT6) is a multifunctional protein that plays critical functions in cell proliferation, apoptosis, differentiation, and angiogenesis. Mutations in STAT6 may contribute to the development of certain complex diseases such as cancer. This study examined single amino acid substitutions in STAT6 to pinpoint deleterious variants and their related structural and functional impairments. Data on STAT6 mutations were obtained from the Ensembl database and analyzed to evaluate the selected mutations for their pathogenicity and destabilizing or harmful effects. Specifically, we analyzed aggregation propensity, nonpacking density, and accessible surface area on the chosen mutations. The results suggest that seven out of eight mutations are less soluble, which might lead to aggregation, disrupt ordered helices, and alter strand propensity. Four mutations lay in the conserved regions of the protein, as revealed by the Consurf analysis. We found that three mutations, E318G, L365F, and R562H, change hydrophobic contacts and lead to frustration of STAT6, which can alter its stability, contributing to disease progression in cancer. In conclusion, these findings inform how single amino acid changes can destabilize STAT6. This has implications for cancer progression which warrants further experimental research.


Assuntos
Neoplasias , Humanos , Substituição de Aminoácidos , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Neoplasias/genética , Proliferação de Células
16.
RSC Adv ; 13(14): 9697-9714, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968050

RESUMO

Sensor applications have captivated numerous scientists in the electroactivity field lately. Between toxic target analytes and biomolecules, many articles investigated the function of the obtained products in sensing utilization and the ability of applying the gained sensor in real sample tests. Safranine and luminol have a unique polymeric constructor combined with different nanomaterials and have been explored as sensors for different analytes through electrochemical and chemical techniques. This work presents the first review of poly(safranine) and poly(luminol) in sensor applications toward assorted analytes. An illustration for the two main types of oxidative polymerization synthetic methods for our targeted compounds has been displayed including chemical and electrochemical techniques. Furthermore, a comprehensive summary for their impressive impact as electrochemical sensors in the last few decades has been additionally introduced.

17.
Polymers (Basel) ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36987288

RESUMO

Currently, polymer organic solar cells (POSCs) are widely utilized due to their significant application, such as low-cost power conversion efficiencies (PCEs). Therefore, we designed a series of photovoltaic materials (D1, D2, D3, D5 and D7) by the incorporation of selenophene units (n = 1-7) as π1-spacers by considering the importance of POSCs. Density functional theory (DFT) calculations were accomplished at MPW1PW91/6-311G (d, p) functional to explore the impact of additional selenophene units on the photovoltaic behavior of the above-mentioned compounds. A comparative analysis was conducted for designed compounds and reference compounds (D1). Reduction in energy gaps (∆E = 2.399 - 2.064 eV) with broader absorption wavelength (λmax = 655.480 - 728.376 nm) in chloroform along with larger charge transference rate was studied with the addition of selenophene units as compared to D1. A significantly higher exciton dissociation rate was studied as lower values of binding energy (Eb = 0.508 - 0.362 eV) were noted in derivatives than in the reference (Eb = 0.526 eV). Moreover, transition density matrix (TDM) and density of state (DOS) data also supported the efficient charge transition origination from HOMOs to LUMOs. Open circuit voltage (Voc) was also calculated for all the aforesaid compounds to check the efficiency, and significant results were seen (1.633-1.549 V). All the analyses supported our compounds as efficient POSCs materials with significant efficacy. These compounds might encourage the experimental researchers to synthesize them due to proficient photovoltaic materials.

18.
RSC Adv ; 13(7): 4303-4313, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36760307

RESUMO

The multistep chemical modification of carboxymethylcellulose (CMC) in the presence of 4-aminophenazone (A-PH) and multiwall carbon nanotubes (MWCNTs) has been successfully conducted. The environmental performance of this material has been thoroughly investigated. Crystal violet (CV) and brilliant green (BG) were eliminated by utilising a new hybrid nanocomposite material (A-PH-CMC/MWCNTs) from a simulated textile wastewater solution. Using SEM, EDX, XRD and FTIR spectroscopy methods, the detailed characterisation of A-PH-CMC/MWCNT nanocomposites was investigated. The results indicated that the adsorption capacity was dependent on six factors (e.g., contact duration, starting concentration, adsorbent mass, the effect of the solution pH, temperature and the effect of KNO3). In addition, thermodynamic and regeneration studies have been reported. According to the theories of pseudo-second-order kinetics, the removal process involves chemical adsorption. The experimental results were best suited by the Langmuir model, in which maximum adsorption capacities of 20.83 and 22.42 mg g-1 were predicted for the BG and CV dyes, respectively. The research is a preliminary case study demonstrating the excellent potential of A-PH-CMC/MWCNT nanocomposites as a material for CV and BG dye removal.

20.
Polymers (Basel) ; 14(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501535

RESUMO

The present study show the usability of starch (tamarind) based-bio-composite film reinforced by fenugreek by various percentages to replace the traditional petrochemical plastics. The prepared bio-composite films were systematically characterized using the universal testing machine (UTM), soil degradation, scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), and antibacterial tests. The experiments showed that a lower percentage of fenugreek improves biodegradation and mechanical strength. More than 60% of biodegradation occurred in only 30 days. Almost 3 N/mm2 tensile strength and 6.5% tensile strain were obtained. The presence of micropores confirmed by SEM images may accelerate the biodegradation process. Antibacterial activity was observed with two samples of synthesized bio-composite, due to photoactive compounds confirmed by FTIR spectra. The glass transition temperature was shown to be higher than the room temperature, with the help of thermal analysis. The prepared bio-composite containing 5% and 10% fenugreek showed antibacterial activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA