RESUMO
Ciliated protozoa (ciliates) play vital roles in biological wastewater-treatment processes, however, combined effects of abiotic and biotic factors as well as the importance of species-specificity of bacterial food organisms on population growth dynamics remain poorly understood, which are hampering the management and optimization of biological wastewater treatment processes. This study investigated the effects of food resources and ammonium nitrogen (NH4+) exposure, both independently and in combination, on the population growth of the bacterivorous ciliate Paramecium caudatum. Results showed that, when fed with two different bacterial food organisms, population growth performance of P. caudatum differed significantly and increased with the addition of protozoa pellet medium. When exposed to NH4+ population growth declined and metabolic enzyme activities were altered. The negative effects of NH4+ on population growth could be weakened by supplementing the food resource with protozoa pellet media. In brief, it was confirmed that the existence of interactive effect of food resources and ammonium nitrogen, as well as the importance of species-specificity of bacterial food organisms on the population growth performance of ciliates. These findings might lead to the development of a valuable strategy for improving the performance of biological wastewater-treatment processes.