Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 96(3): e20230646, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39046020

RESUMO

This work investigated the antioxidant and hepatoprotective activities of lemongrass extract and its effects on rat hepatotoxicity. The lemongrass extract (LGE) contains bioactive components such as phenolic acids, flavonoid components, vitamin C, fibers, and tannins. The LGE had high phenolic content (397 mg/100g) and flavonoids (164 mg/100g), influencing its antioxidant activity of 91.25%. Additionally, it inhibited 81% of breast cancer, also, inhibited the growth of pathogenic bacteria and Candida at a concentration of 20-40 µg/mL. Additionally, it inhibited SARS-Cov-2 by 75%; however, increasing the activity of Cas-3. Quercetin-3-rhamnoside was the main phenolic compound in the HPLC profile; the phenolic compounds may be attributable to the beneficial effects of LGE. In this study, the CCl4-challenged rats delivered two levels of LGE (100 and 300 mg/kg BW). LGE reduced ALT, AST, creatinine and urea by 50 and 37%, respectively. Generally, LGE mitigated the oxidative stress induced by CCl4, which is evident in the histology of liver and kidney tissues, where significant improvement, with no cytoplasmic degradation in undamaged liver hepatocytes, improved kidney performance and shape. It can be concluded that polyphenolic-rich LGE can mitigate the oxidative stress induced by CCl4 and other parameters while enhancing kidney and liver performance.


Assuntos
Antioxidantes , Antivirais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Extratos Vegetais , Folhas de Planta , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antioxidantes/farmacologia , Ratos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Antivirais/farmacologia , Folhas de Planta/química , Masculino , Ratos Wistar , Anti-Infecciosos/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia
2.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 10-17, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430047

RESUMO

The present study aimed to identify and characterize new sources of salt tolerance among 94 rice varieties from varied geographic origins. The genotypes were divided into five groups based on their morphological characteristics at both vegetative and reproductive stages using salinity scores from the Standard Evaluation System (SES). The experiment was designed as per CRD (Completely Randomized Design) with 2 sets of salinity treatments for 8 dS/meter and 12 dS/meter, respectively compared with one non-salinized control set. Using a Soil Plant Analysis Development (SPAD) meter, assessments of the apparent chlorophyll content (greenness) of the genotypes were done to comprehend the mechanism underlying their salt tolerance.  To evaluate molecular genetic diversity, a panel of 1 K RiCA SNP markers was employed. Utilizing TASSEL 5.0 software, 598 filtered SNPs were used for molecular analysis. Whole-genome association studies (GWAS) were also used to investigate panicle number per plant (pn, tiller number per plant (till), SPAD value (spad), sterility (percent) (str), plant height (ph) and panicle length (pl. It is noteworthy that these characteristics oversee conveying the visible signs of salt damage in rice. Based on genotype data, diversity analysis divided the germplasm groups into four distinct clusters (I, II, III and IV). For the traits studied, thirteen significant marker-trait associations were discovered. According to the phenotypic screening, seven germplasm genotypes namely Koijuri, Asha, Kajal, Kaliboro, Hanumanjata, Akundi and Dular, are highly tolerant to salinity stress. The greenness of these genotypes was found to be more stable over time, indicating that these genotypes are more resistant to stress. Regarding their tolerance levels, the GWAS analysis produced comparable results, supporting that salinity-tolerant genotypes having minor alleles in significant SNP positions showed more greenness during the stress period. The Manhattan plot demonstrated that at the designated significant SNP position, the highly tolerant genotypes shared common alleles. These genotypes could therefore be seen as important genomic resources for accelerating the development and release of rice varieties that are tolerant to salinity.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Oryza/genética , Estudo de Associação Genômica Ampla , Genótipo , Amantadina , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA