Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422542

RESUMO

5-Fluorouracil (5-FU) is an anticancer drug with intestinal mucositis (IM) as a deleterious side effect. Thymol is a monoterpene phenol which has been reported to possess an antioxidant and anti-inflammatory activity versus 5-FU-induced IM. The Notch pathway affects multiple cellular activities, such as cellular proliferation, in addition to inflammatory responses modulation. Accordingly, this work was carried out in order to elucidate the role of the Notch pathway in 5-FU-induced IM and to further elucidate the immunomodulatory protective mechanisms of thymol. Experimental rats were divided randomly into four groups: Control, 5-FU, 5-FU+thymol (60 mg/kg/day), and 5-FU+thymol (120 mg/kg/day). 5-FU was injected intraperitoneally at a dose of 150 mg/kg on days 6 and 7, while thymol was orally administered daily for 11 days. By the end of the study, intestinal tissues were collected for the determination of IL-17, CD4, CD8, Notch1, Hes-1, pSTAT3, and STAT-3 protein expressions. The effect of thymol on 5-FU cytotoxicity was also examined using WST1 assay. 5-FU induced a marked increase in IL-17 levels, along with a marked downregulation of CD4 and the upregulation of CD8, Notch1, Hes-1 protein expressions, and activation of STAT3 in the intestinal tissue when compared with the control group. Thymol ameliorated the changes that occurred in these parameters. Additionally, cytotoxicity testing revealed that thymol augmented the antiproliferative action of 5-FU against breast and colorectal human cancer cell lines. This study was the first to show that the IL-17/Notch1/STAT3 pathway is involved in the molecular mechanism of 5-FU-induced IM, as well as the immunomodulatory activity of thymol.

2.
Dose Response ; 19(1): 1559325821995651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746653

RESUMO

Obesity is associated with high risk and poor prognosis of breast cancer (BC). Obesity promotes BC cells proliferation via modulating the production of adipokines, including adiponectin (anti-neoplastic adipokine), leptin (carcinogenic adipokine) and inflammatory mediators. In the present study we investigated the anti-proliferative effects of liraglutide (LG; anti-diabetic and weight reducing drug) on MCF-7 human BC cells cultured in obese adipose tissue-derived stem cells-conditioned medium (ADSCs-CM) and whether this effect is mediated via modulating the adipokines in ADSCs and cancer cells. Proliferation was investigated using AlamarBlue viability test, colony forming assay and cell cycle analysis. Levels and expression of adipokines and their receptors were assayed using ELISA and RT-PCR. LG caused 48% inhibition of MCF-7 proliferation in obese ADSCs-CM, reduced the colony formation and induced G0/G1 phase arrest. LG also decreased the levels of inflammatory mediators, suppressed the expression of leptin, while increased mRNA levels of adiponectin and their receptors in obese ADSCs and cancer cells cultured in obese ADCSs-CM. In conclusion, LG could mitigate BC cell growth in obese subjects; therefore it could be used for clinical prevention and/or treatment of BC in obese subjects. It may assist to improve treatment outcomes and, reduce the mortality rate in obese patients with BC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA