RESUMO
Wheat (Triticum aestivum L.) is a staple food crop that plays a crucial role in global food security. A suitable planting pattern and optimum nitrogen (N) split management are efficient practices for improving wheat production. Therefore, an experiment was performed to explore the effect of N split management and sowing patterns on wheat at the Agronomy Research Farm, The University of Agriculture Peshawar, during rabi season 2020-21 and 2021-22. The treatments consisted of different nitrogen rates of 0, 80, 120, and 160 kg ha- 1 and planting patterns of W, M, broadcast and line sowing. The pooled analysis of both cropping seasons showed that application of 120 kg N ha- 1 increased spikelets spike- 1, grains spike- 1, 1000 grains weight, grain yield, grain N content, evapotranspiration and water use efficiency by 21.9, 16.7, 21.8, 70, 13, 19.9 and 40% as compared to control, respectively. In addition, W and M were observed the best management practices among all planting patterns. The M planting pattern enhanced chlorophyll a, b, carotenoids and evapotranspiration while W plating pattern improved yield components and yield of wheat as compared to broadcast planting patterns. The principal component analysis biplot showed a close association of M and W planting patterns with 120 kg N ha- 1 in most of the studied traits. Hence, it is concluded that split application of 120 kg N ha- 1 in W and M sowing patterns enhanced growth, biochemical traits and water use efficiency, reducing N fertilization from 160 to 120 kg ha- 1 while increasing grain yield of wheat. Hence, it is recommended that application of 120 kg N ha⻹ in combination with W and M planting patterns offer a sustainable approach to enhancing wheat production in the alkaline soil conditions of the Peshawar valley.
Assuntos
Fertilizantes , Nitrogênio , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Nitrogênio/metabolismo , Fertilizantes/análise , Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Agricultura/métodos , Clorofila/metabolismoRESUMO
Introduction: Salinity negatively affects maize productivity. However, calcium lignosulfonate (CLS) could improve soil properties and maize productivity. Methods: In this study, we evaluated the effects of CLS application on soil chemical properties, plant physiology and grain quality of maize under salinity stress. Thus, this experiment was conducted using three CLS application rates, CLS0, CLS5, and CLS10, corresponding to 0%, 5%, and 10% of soil mass, for three irrigation water salinity (WS) levels WS0.5, WS2.5, and WS5.5 corresponding to 0.5 and 2.5 and 5.5 dS/m, respectively. Results and discussion: Results show that the WS0.5 × CLS10 combination increased potassium (K 0.167 g/kg), and calcium (Ca, 0.39 g/kg) values while reducing the sodium (Na, 0.23 g/kg) content in soil. However, the treatment WS5.5 × CLS0 decreased K (0.120 g/kg), and Ca (0.15 g/kg) values while increasing Na (0.75 g/kg) content in soil. The root activity was larger in WS0.5 × CLS10 than in WS5.5 × CLS0, as the former combination enlarged K and Ca contents in the root while the latter decreased their values. The leaf glutamine synthetase (953.9 µmol/(g.h)) and nitrate reductase (40.39 µg/(g.h)) were higher in WS0.5 × CLS10 than in WS5.5 × CLS0 at 573.4 µmol/(g.h) and 20.76 µg/(g.h), leading to the improvement in cell progression cycle, as revealed by lower malonaldehyde level (6.57 µmol/g). The K and Ca contents in the leaf (881, 278 mg/plant), stem (1314, 731 mg/plant), and grains (1330, 1117 mg/plant) were greater in WS0.5 × CLS10 than in WS5.5 × CLS0 at (146, 21 mg/plant), (201, 159 mg/plant) and (206, 157 mg/plant), respectively. Therefore, the maize was more resistance to salt stress under the CLS10 level, as a 7.34% decline in yield was noticed when salinity surpassed the threshold value (5.96 dS/m). The protein (13.6 %) and starch (89.2 %) contents were greater in WS0.5 × CLS10 than in WS5.5 × CLS0 (6.1 %) and (67.0 %), respectively. This study reveals that CLS addition can alleviate the adverse impacts of salinity on soil quality and maize productivity. Thus, CLS application could be used as an effective soil amendment when irrigating with saline water for sustainable maize production.
RESUMO
BACKGROUND: Nitrogen (N) availability is crucial in regulating plants' abiotic stress resistance, particularly at the seedling stage. Nevertheless, plant responses to N under salinity conditions may vary depending on the soil's NH4+ to NO3- ratio. METHODS: In this study, we investigated the effects of different NH4+:NO3- ratios (100/0, 0/100, 25/75, 50/50, and 75/25) on the growth and physio-biochemical responses of soybean seedlings grown under controlled and saline stress conditions (0-, 50-, and 100-mM L- 1 NaCl and Na2SO4, at a 1:1 molar ratio). RESULTS: We observed that shoot length, root length, and leaf-stem-root dry weight decreased significantly with increased saline stress levels compared to control. Moreover, there was a significant accumulation of Na+, Cl-, hydrogen peroxide (H2O2), and malondialdehyde (MDA) but impaired ascorbate-glutathione pools (AsA-GSH). They also displayed lower photosynthetic pigments (chlorophyll-a and chlorophyll-b), K+ ion, K+/Na+ ratio, and weakened O2â¢--H2O2-scavenging enzymes such as superoxide dismutase, catalase, peroxidase, monodehydroascorbate reductase, glutathione reductase under both saline stress levels, while reduced ascorbate peroxidase, and dehydroascorbate reductase under 100-mM stress, demonstrating their sensitivity to a saline environment. Moreover, the concentrations of proline, glycine betaine, total phenolic, flavonoids, and abscisic acid increased under both stresses compared to the control. They also exhibited lower indole acetic acid, gibberellic acid, cytokinins, and zeatine riboside, which may account for their reduced biomass. However, NH4+:NO3- ratios caused a differential response to alleviate saline stress toxicity. Soybean seedlings supplemented with optimal ratios of NH4+:NO3- (T3 = 25:75 and T = 4 50:50) displayed lower Na+ and Cl- and ABA but improved K+ and K+/Na+, pigments, growth hormones, and biomass compared to higher NH4+:NO3- ratios. They also exhibited higher O2â¢--H2O2-scavenging enzymes and optimized H2O2, MDA, and AsA-GSH pools status in favor of the higher biomass of seedlings. CONCLUSIONS: In summary, the NH4+ and NO3- ratios followed the order of 50:50 > 25:75 > 0:100 > 75:25 > 100:0 for regulating the morpho-physio-biochemical responses in seedlings under SS conditions. Accordingly, we suggest that applying optimal ratios of NH4+ and NO3- (25/75 and 50:50) can improve the resistance of soybean seedlings grown in saline conditions.
Assuntos
Antioxidantes , Glycine max , Nitratos , Reguladores de Crescimento de Plantas , Tolerância ao Sal , Plântula , Glycine max/fisiologia , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Estresse Salino , Íons/metabolismoRESUMO
BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.
Assuntos
Germinação , Lens (Planta) , Sementes , Temperatura , Germinação/fisiologia , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Lens (Planta)/fisiologia , Lens (Planta)/crescimento & desenvolvimento , Água/metabolismo , Modelos Biológicos , Pressão OsmóticaRESUMO
BACKGROUND: Three Amino acid Loop Extension (TALE) belongs to the homeobox group of genes that are important constituents of plant systems. The TALE gene family is instrumental not only in growth and development but also plays an essential role in regulating plant response to environmental adversaries. RESULTS: In the present study, we isolated 21 CsTALE genes from the cucumber (Cucumis sativus L.) genome database. Bioinformatics tools were put in place to understand the structural and functional components of the CsTALE gene family. The evolutionary analysis dissected them into seven subclades (KNOX-I, KNOX-II, and BELL-I to BELL-V). The cis-acting elements in the promoter region of CsTALE genes disclosed that they are key regulators of hormonal and stress-related processes. Additionally, the STRING database advocated the concerting role of CsTALE proteins with other key transcription factors potent in plant developmental biology. The CsmiR319 and CsmiR167a-3p targeting the CsTALE15 and CsTALE16, respectively, further assert the importance of the CsTALE gene family posttranscriptional-related processes. Tissue-specific gene expression unfolded the fundamental involvement of CsTALE genes as they were expressed throughout the developmental stages. Under waterlogging stress, the CsTALE17 expressed significantly higher values in WL, WL-NAA, and WL-ETH but not in WL-MeJA-treated samples. CONCLUSIONS: The present study reveals the evolution and functions of the CsTALE gene family in cucumber. Our work will provide a platform that will help future researchers address the issue of waterlogging stress in the Yangtze River Delta.
Assuntos
Cucumis sativus , Regulação da Expressão Gênica de Plantas , Família Multigênica , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Estresse Fisiológico , Cucumis sativus/genética , Cucumis sativus/fisiologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Evolução Molecular , Filogenia , Genes de PlantasRESUMO
BACKGROUND: The rate of germination and other physiological characteristics of seeds that are germinating are impacted by deep sowing. Based on the results of earlier studies, conclusions were drawn that deep sowing altered the physio-biochemical and agronomic characteristics of wheat (Triticum aestivum L.). RESULTS: In this study, seeds of wheat were sown at 2 (control) and 6 cm depth and the impact of exogenously applied salicylic acid and tocopherol (Vitamin-E) on its physio-biochemical and agronomic features was assessed. As a result, seeds grown at 2 cm depth witnessed an increase in mean germination time, germination percentage, germination rate index, germination energy, and seed vigor index. In contrast, 6 cm deep sowing resulted in negatively affecting all the aforementioned agronomic characteristics. In addition, deep planting led to a rise in MDA, glutathione reductase, and antioxidants enzymes including APX, POD, and SOD concentration. Moreover, the concentration of chlorophyll a, b, carotenoids, proline, protein, sugar, hydrogen peroxide, and agronomic attributes was boosted significantly with exogenously applied salicylic acid and tocopherol under deep sowing stress. CONCLUSIONS: The results of the study showed that the depth of seed sowing has an impact on agronomic and physio-biochemical characteristics and that the negative effects of deep sowing stress can be reduced by applying salicylic acid and tocopherol to the leaves.
Assuntos
Germinação , Ácido Salicílico , Tocoferóis , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/efeitos dos fármacos , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Tocoferóis/metabolismo , Germinação/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Antioxidantes/metabolismo , Estresse Fisiológico , Desenvolvimento Sustentável , Clorofila/metabolismoRESUMO
Purpose of current study was to determine physicochemical, triglyceride composition, and functional groups of wild adlay accessions (brown, black, yellow, grey, green, off white, and purple) to find out its scope as cereal crop. Triglycerides, minerals and functional groups were determined through Gas chromatography, spectrophotometer and Fourier Transform Infrared (FTIR) spectrophotometer respectively. Results revealed variation among bulk densities, specific densities, percent empty spaces, and corresponding grain counts per 10 g of sample are useful in distinguishing brown, black, yellow, grey, green, off white, and purple wild adlay accessions. Specific density and grain count per 10 g sample was significantly related. No statistical relationship exists among the pronounced physical characteristics. Brown adlay expressed the highest protein, fat, and fiber contents 15.82%, 4.76% and 2.37% respectively. Protein, fat, ash, and fiber percent contents were found comparable to cultivated adlay. Spectrophotometric analysis revealed macro elements including phosphorus, potassium, calcium, and sodium in the range 0.3% - 2.2% and micro elements boron, iron, copper, zinc, and manganese in the range 1.6 mg/kg - 20.8 mg/kg. Gas chromatography showed polyunsaturated fatty acids (PUFA) constitute the primary fraction (39% ± 7.2) of wild adlay triglycerides. Linoleic and palmitic acids were present as prominent fatty acids, 43.5% ±1.4 and 26.3% ±1.4 respectively. Infra-red frequencies distinguished functional groups in narrow band and fingerprint region of protein in association with out of plane region leading to structural differences among adlay accessions. Comparison of major distinguishing vibrational frequencies among different flours indicated black adlay containing highest functional groups appeared promising for varietal development.
RESUMO
With increasing use of antibiotics, the development of antibiotic-resistant pathogens poses a serious threat to human health and the environment. Photocatalytic inactivation of these harmful pathogens is one of the novel and non-antibiotic treatments. The study fabricated Ag NPs decorated CdZnS QDs via a facile and biological co-precipitation method using L. camara plant extract as a green alternative to treat the toxic chemicals. The fabricated Ag/CdZnS QDs (NCs) were prepared for the efficient treatment of antibiotic-resistant pathogens as they raise a major global concern. The fabricated NCs were characterized with various characterization techniques to verify its physicochemical properties. The fabricated NCs have shown excellent photo-sterilization performance of 97 % against S. aureus. The excellent activity was attributed to the decoration of Ag NPs on CdZnS QDs as it helped in shortening band gap, improved visible light absorption ability, increased active sites, and boosted photogenerated electron/hole pairs stability. Radical trapping experiment and ESR analysis indicated the involvement of â¢OH and h+ in the photoinactivation of bacteria. The photo sterilization reaction of NCs was carried out under different environmental conditions, including light and dark conditions and different pH conditions. The experiment was carried out in sewage-treated water in order to test the real-time application, and the fabricated NCs achieved excellent 95.9 % photo-inactivation of S. aureus cells in sewage treated water and the Chemical Oxygen Demand (COD) of the system was increased after photo inactivation treatment. The fabricated NCs have also shown excellent reusable efficiency of 95% after six runs and the photostability and anti-corrosive nature of NCs were confirmed. The study provides an insight for the employment of photocatalysis for the sterilization of pathogens in real time aquatic environment across the globe.
Assuntos
Nanocompostos , Staphylococcus aureus , Humanos , Esgotos , Luz , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , ÁguaRESUMO
In recent years, the discharge of pharmaceutical drugs into aquatic ecosystems has become a growing concern, posing a significant threat to aquatic life. In response to this environmental challenge, advanced oxidation processes have gained prominence in wastewater treatment due to their efficacy in eliminating pharmaceutical pollutants and their potential for reusability. In this study, we have fabricated SnIn4S8 coupled SrO2 nano-heterojunction (NH) using a greener co-precipitation approach using leaf extract derived from Acaphyla wilkesiana. The resulting NH exhibited exceptional photocatalytic activity against rifampicin (RIF), achieving a remarkable 97.4% degradation under visible light, surpassing the performance of its individual components. The morphological characteristics of the NH were thoroughly analyzed through SEM, TEM, XRD, and XPS techniques, while EIS, DRS, and BET techniques provided valuable insights into its photocatalytic and optical properties. Furthermore, radical scavenging assays and ESR analysis identified hydroxyl radicals (â¢OH) and superoxide radicals (O2â¢-) were the species contributing to the visible light-driven photocatalytic degradation. The study also elucidated the potential degradation pathways and intermediates of RIF through GC-MS analysis. Additionally, the toxicity of the produced intermediates was assessed using the ECOSAR model. The findings have significant implications for the treatment of pharmaceutical pollutants and underscore the importance of eco-friendly synthesis methods in addressing environmental challenges.
Assuntos
Poluentes Ambientais , Piperidinas , Rifampina , Rifampina/toxicidade , Ecossistema , Luz , Preparações Farmacêuticas , CatáliseRESUMO
The escalating presence of heavy metals (HMs) in the Panjkora River water and their impact on fish pose a significant challenge to both the ecological community and human health. Consequently, a study was conducted with the primary aim of elucidating their influence on human health-related issues. To address this, the concentrations of heavy metals, including arsenic (As), cadmium (Cd), iron (Fe), manganese (Mn), lead (Pb), and zinc (Zn), in both water and the fish species Crossocheilus diplocheilus were investigated across various locations within the study area. The quantification of HMs concentration was carried out utilizing an atomic absorption spectrophotometer. The highest concentration in water was found as 0.060 mg/L for Pb and lowest for Fe, whereas the highest concentration in fish was 2.028 mg/kg for Pb and lowest for As. Human health risk associated with fish eating was evaluated by using health risk indices (HRI) for non-carcinogenic health risks and targeted cancer risk (TR) for carcinogenic health risks. The values of the health risk index (HRI) were found greater than 1 except Fe (0.0792), Zn (0.782), and Mn (0.541). The highest mean HRI > 1 was recorded for As (62.99), Cd (26.85), and Pb (10.56). This implies that fish consumption from river Panjkora is not safe up to some extent. Similarly, the TR value for As, Cd, and Pb was found 2.8 [Formula: see text], 1.6 [Formula: see text], 2.8 ×[Formula: see text] which showed cancer risk. There is a detected risk to human health associated with the consumption of fish from the Panjkora River. The government must implement adaptive measures to address this significant issue of water pollution in the study area. Additionally, there is a need for further extensive and prolonged research studies in this context.
Assuntos
Arsênio , Metais Pesados , Neoplasias , Poluentes Químicos da Água , Animais , Humanos , Qualidade da Água , Cádmio , Chumbo , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Arsênio/toxicidade , Arsênio/análise , Manganês , Rios , Peixes , Medição de RiscoRESUMO
A morphological oriented highly active Cu2O-Ag-CaWO4 (CAC) nano-heterojunction was fabricated for the visible light driven degradation of rifampicin (RFP). Octahedron shaped Cu2O being a base material, where the Tagetes shaped CaWO4 and Ag were embedded on it. The shape-controlled morphology of Cu2O and CaWO4 as well as Ag decoration influence high degree of adsorption of RFP and interfacial charge transfer between the nano-heterojunction. Further, the larger specific surface area (129.531 m2/g) and narrow band gap energy (2.57 eV) of CAC nano-heterojunction than the controls support the statement. Positively, CAC nano-heterojunction following Z-scheme-type charge transport mechanism attained 96% of RFP degradation within 100 min. O2â¢- and â¢OH are the primarily involved reactive oxidation species (ROS) during the photocatalytic reactions, determined by scavenger study and ESR analysis. The stability and reusability of the CAC nano-heterojunction was assessed through performing cyclic experiment of RFP degradation and it holds 96.8% of degradation even after 6th cycle. The stability of CAC nano-heterojunction after photodegradation was further confirmed based on crystalline pattern (XRD analysis) and compositional states (XPS analysis). Intermediates formed during RFP degradation and its toxicity was discovered by using GC-MS/MS and ECOSAR analysis respectively. The end-product toxicity against bacterial system and genotoxicity of CAC nano-heterojunction against Allium cepa were evaluated and the results were seemed to have no negative causes for the aquatic lives.
Assuntos
Rifampina , Espectrometria de Massas em Tandem , Adsorção , Luz , SoftwareRESUMO
The present work is centred around the development of La2O3/(BiO)2CO3/Ag3PO4 (LBA), a p-n-p nano-heterojunction to photodegrade doxycycline under visible light irradiation. Here, ultrasonication assisted co-precipitation method was employed to synthesize the photocatalyst. The photocatalyst was characterized using different analysis such as SEM, TEM, elemental mapping, XRD, XPS, FTIR, Raman, BET, DRS, PL and EIS which confirmed the successful fabrication of LBA and their excellent ability to refrain the e-/h+ recombination owing to the construction of the heterojunction. LBA was found to degrade DOX by 91.75 % with the high mineralization of 87.23%. The impact of the reaction parameters influencing the photodegradation process including the concentration of the NCs and DOX, pH and the influence of the commonly present anions were studied. The stability and reusability of the LBA was assessed through subjecting it to four cycles of photodegradation of DOX. In addition, the recovered LBA was characterized through XPS and XRD analysis to confirm the particles stability and reusability. The active participation of the photogenerated charges and the reactive oxygen species were identified through the scavenging assay and ESR analysis. Further, GC-MS/MS analysis was performed to put forward a plausible photodegradation pathway. The toxicity of the end products as well as the intermediates was predicted through ECOSAR software.
Assuntos
Doxiciclina , Óxidos , Espectrometria de Massas em Tandem , Bioensaio , Lantânio , LuzRESUMO
Soil salinity caused a widespread detrimental issue that hinders productivity in agriculture and ecological sustainability, while waste-derived soil amendments like biochar have drawn attention for their capacity to act as a mitigating agent, by enhancing the physical and chemical features of soil, and contributing to the recovery of agricultural waste resources. However, the information concerning biochar and salinity which affect the physicochemical characteristics of soils, crop physiology, and growth is limited. To investigate whether biochar mitigates the salinity stress on wheat crop seedlings, we grow them with salinity stress (120 mM), and biochar (20 tons ha-1), and its interactive effects. The soil properties of soil organic carbon (SOC), soil organic matter (SOM), dissolved organic carbon (DOC), and soil available phosphorus (SAP) decreased in the saline soil by 36.71%, 46.97%, 26.31%, and 15.00%, while biochar treatment increased SOC, DOC, and SAP contents by 7.42%, 31.57%, and 15.00%, respectively. On the other hand, dissolved organic nitrogen (DON) contents decreased in all the treatments compared to the control. The root growth traits, SPAD values, leaf nitrogen, photosynthetic parameters, antioxidant enzymes, and reactive oxygen species decreased in the saline treatment while increasing in the biochar and interactive treatment. Thus, these activities resulted in higher leaves and root biomass in the biochar treatment alone and interactive treatment of salinity and biochar. According to principal component analysis, redundancy analysis, and the mantel test, using biochar in conjunction with salinity treatment was found to be more effective than salinity treatment alone. The results of this study suggest that biochar can be used as a sustainable agricultural technique and a means of mitigation agent by lowering soil salinity while increasing the biomass of crops.
Biochar improves the physical and nutritional quality of soil and plant function.Salinity stress declined the physiological activities and biomass of the crop.Biochar mitigates the salinity stress in soil and enhances the plant functioning.Exposure to both treatments enhances the antioxidant enzyme activity and biomass.
Assuntos
Agricultura , Biodegradação Ambiental , Carvão Vegetal , Salinidade , Solo , Triticum , Solo/química , Triticum/crescimento & desenvolvimento , Agricultura/métodos , Fósforo , Nitrogênio/metabolismoRESUMO
Textile-based photocatalysts are the new materials that can be utilized as an effective sustainable solution for biochemical hazards. Hence, we aimed to develop a sustainable, cost-effective, and facile approach for the fabrication of photocatalytic fabric using graphitic carbon nitride (g-C3N4) and ferric-based multifunctional nanocomposite. Bulk g-C3N4 was prepared from urea by heating it at 500 °C for 2 h. The structure of ball-milled g-C3N4 was engineered by doping with various amounts of iron (III) chloride hexahydrate solution (0.006 mol/L) and sintered at 90 °C for 24 h to prepare g-C3N4-nanosheets/α-Fe2O3 composites. These nanocomposites have potential avenues towards rational designing of g-C3N4 for improved photocatalytic, antibacterial, and antiviral behavior. The prepared nanocomposite was characterized for its surface morphology, chemical composition, crystal structure, catalytic, antibacterial, and antiviral behavior. The fabrication of ferric doped g-C3N4 nanocomposites was characterized by SEM, EDX, FTIR, and XRD analysis. The coated fabric nanocomposite was characterized for methylene blue dye degradation under visible light, antibacterial and antiviral behavior. The developed textile-based photocatalyst has been found with very good recyclability with photocatalytic degradation of dye up to 99.9 % when compared to conventional g-C3N4 powder-based photocatalyst.
RESUMO
The verification of taxonomic identities is of the highest significance in the field of biological study and categorization. Morpho-molecular characterization can clarify uncertainties in distinguishing between taxonomic groups. In this study, we characterized five local taxa of the genus Cichorium using morphological and molecular markers for taxonomic authentication and probably future genetic improvement. The five Cichorium taxa grown under the Mediterranean climate using morphological traits and molecular markers showed variations. The examined taxa showed a widespread range of variations in leaf characteristics, i.e., shape, type, texture, margin, and apex and cypsela characteristics i.e., shape, color, and surface pattern. The phylogenetic tree categorized the Cichorium intybus var. intybus and C. intybus var. foliosum in a single group, whereas C. endivia var. endivia was grouped separately. However, C. endivia var. crispum and C. endivia subsp. pumilum were classified as a cluster. The recorded variance between classes using the molecular markers SCoT, ISSR, and RAPD was documented at 34.43%, 36.62%, and 40.34%, respectively. Authentication using molecular tools proved the usefulness of a dichotomous indented key, as revealed by morphological identification. The integrated methodology using morphological and molecular assessment could support improved verification and authentication of the various taxa of chicory. It seems likely that the Egyptian chicory belongs to C. endivia subsp. pumilum.
RESUMO
Chromium (Cr) is a toxic environmental pollutant that majorly exists in trivalent and hexavalent forms. Though Cr(VI) is more dangerous than Cr(III), the trivalent Cr forms complexes with environmentally-available organic molecules. This makes them potentially harmful and difficult to detect. In this study, we have designed an ultrasensitive plasmonic nanosensor using citrate and PVP functionalized Ag nanoparticles (Ag-citrate-PVPNPs) for the detection of trivalent chromium organic complexes such as Cr(III)-EDTA (Cr-E), Cr(III)-acetate (Cr-A), Cr(III)-citrate (Cr-C) and Cr(III)-tartrate (Cr-T). The nanoparticles (NPs) were structurally characterized by XRD, SEM, HRTEM, SAED, EDX and elemental mapping. The citrate and PVP molecules played a vital role in the detection mechanism and stability of the sensor. Upon detection, the yellow-colored Ag-citrate-PVP NPs turned into different shades of brown depending on the type of the Cr complex and concentration. It was accompanied by diminishing and/or shifting UV-Visible absorbance peaks due to the aggregation of Ag-citrate-PVP NPs. Further, a linear relationship was observed between absorbance reduction and analyte concentration. The selectivity tests showed that the sensor was non-functional to other metal ions and inorganic anions. The sensor was optimized using pH and temperature studies. The mechanism of detection was elucidated with the help of characterization techniques such as Raman spectroscopy, FTIR, XPS and UV-visible spectrophotometer. The limit of detection (LOD) was found to be 3.29, 4.87, 1.76 and 1.79 nM for Cr-E, Cr-A, Cr-C and Cr-T complexes respectively. This study provides a rapid and sensitive approach for the detection of multiple Cr(III)-organic complexes present in an aqueous solution.
Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Cromo/análise , Ácido Cítrico/química , Ácido Edético/química , Nanopartículas Metálicas/química , Prata/química , Tartaratos , Poluentes Químicos da Água/análiseRESUMO
Even though it is a forest native plant, there are already several studies evaluating the small genome of Jatropha curcas L., which belongs to the Euphorbiaceae family, and may be an excellent representative model for the other plants from the same family. Jatropha curcas L. plant has fast growth, precocity, and great adaptability, facilitating silvicultural studies, allowing important information to be obtained quickly, and reducing labor costs. This information justifies the use of the species as a model plant in studies involving the reproduction of native plants. This study aimed to evaluate the possibility of using Jatropha curcas L. as a model plant for studies involving native forest plants and establish possible recommendations for the vegetative propagation of the species using hardwood cuttings. The information collected can be helpful to other native forest plant species, similar to Jatropha curcas L. To this end, the effects of hardwood cutting length (10, 20, and 30 cm) and the part of the hardwood cuttings (basal, middle, and apex) were evaluated. Moreover, the influence of immersing the hardwood cuttings in solutions containing micronutrients (boron or zinc) or plant regulators (2,4-D, GA3) and a biostimulant composed of kinetin (0.09 g L-1), gibberellic acid (0.05 g L-1), and 4-indole-3-butyric acid (0.05 g L-1). The experiments were carried out in duplicates. In one duplicate, sand was used as the substrate, and rooting evaluations were made 77 days after planting. In another duplicate, a substrate composed of 50% soil, 40% poultry litter, and 10% sand was used, and the evaluations of the saplings were performed 120 days after planting. The GA3 solutions inhibited the roots' and sprouts' emissions, while immersion in 2,4-D solution increased the number of primary roots at 77 days after planting. The hardwood cuttings from the basal part of the branch had the best results for producing saplings.
RESUMO
Soil secondary salinization is a serious menace that has significant influence on the sustainability of agriculture and threatens food security around the world. Zinc (Zn) as an essential plant nutrient associated with many physio-biochemical processes in plants and improve resistance against various abiotic stresses. The role of Zn in acclimation of Solanum lycopersicum L. challenged with salt stress is miserly understood. A hydroponic study was performed with two tomato varieties (Riogrande and Sungold) exposed to the salinity stress (0 mM and 160 mM NaCl) under two Zn concentrations (15 µM and 30 µM ZnSO4). The results revealed that salt stress exerted strongly negative impacts on root and shoot length, fresh and dry biomass, plant water relations, membrane stability, chlorophyll contents, Na+/K+ ratio along with inferior gas exchange attributes and activities of antioxidant enzymes. Moreover, Riogrande was found to be more resistant to salinity stress than Sungold. However, Zn supply significantly alleviated the hazardous effects of salinity by altering compatible solutes accumulation, photosynthetic activity, water relation, soluble sugar contents and providing antioxidant defense against salt stress. The salinity + Zn2 treatment more obviously enhanced RWC (19.0%), MSI (30.8%), SPAD value (17.8%), and activities of SOD (31.7%), POD (28.5%), APX (64.5%) and CAT (23.3%) in Riogrande than Sungold, compared with the corresponding salinity treatment alone. In addition, salinity + Zn2 treatment significantly (P > 0.05) ameliorated salinity stress due to the depreciation in Na+/K+ ratio by 63.3% and 40.8%, Na+ ion relocation from root to shoot by 10.4% and 6.4%, and thereby significantly reduced Na+ ion accumulation by 47.4% and 16.3% in the leaves of Riogrande and Sungold respectively, compared to the salinity treatment alone. Therefore, it was obvious that 30 µM Zn concentration was more effective to induce resistance against salinity stress than 15 µM Zn concentration. Conclusively, it can be reported that exogenous Zn application helps tomato plant to combat adverse saline conditions by modulating photosynthetic and antioxidant capacity along with reduced Na+ uptake at the root surface of tomato plant.
Assuntos
Solanum lycopersicum , Antioxidantes/farmacologia , Salinidade , Tolerância ao Sal , Plântula , Sódio/farmacologia , Água/farmacologia , Zinco/farmacologiaRESUMO
In this study, 3D C2S3 (CS) and 2D Bi2S3 (BS) modified NiCr2O4 nanocomposite (NCO-BS-CS NCs) was prepared by sonochemical assisted co-precipitation method for the enhanced photocatalytic activity. Here, NCO-BS-CS NCs showed band gap energy of 2.23 eV and the PL intensity of NCO-BS-CS NCs was lower than NCO, BS, and CS NPs. Thus, the results indicate the fabricated NCO-BS-CS NCs enhance the charge segregation and lower in recombination rate. NCO-BS-CS NCs showed enhanced photodegradation of methyl orange (MO) (95%) and congo red (CR) (99.7%) respectively. The total organic compound (TOC) analysis shows the complete mineralization of about 91 and 98% for MO and CR respectively. Furthermore, the Fukui function was used for the prediction of reactive sites in the photodegradation pathway of MO and CR by NCs. ECOSAR program was done to determine the toxicity of the intermediate and the results conclude that the degraded product shows nontoxic to the environmental organism (fish, daphnia, and algae). Thus, the fabricated NCO-BS-CS NCs can be used for the remediation of toxic organic pollutants from the waste water by photocatalytic degradation.
Assuntos
Poluentes Ambientais , Nanocompostos , Poluentes Químicos da Água , Animais , Catálise , Domínio Catalítico , Vermelho Congo/química , Poluentes Ambientais/análise , Luz , Nanocompostos/química , Nanocompostos/toxicidade , Esqueleto/química , Poluentes Químicos da Água/químicaRESUMO
Leafy vegetable crops are considered as a natural source of mineral nutrients that could decrease the risk factor of many growth issues in children and adults. Spinach is globally considered as the most desirable leafy crop, due to its taste and nutrient richness along with greater nitrate contents and better nitrogen use efficiency. To evaluate the mineral nutrient efficiency of this crop, thirty genetically diverse spinach accessions were analyzed through nutritional and functional marker strategies. The accession 163,310 from Pakistan was found to be rich in minerals (sodium, calcium, potassium, zinc, and manganese) and nitrates. However, the oxalate contents were lesser in the accessions that had greater quantity of nutrients. These represented a negative correlation between mineral availability and oxalate accumulation in the leaves. To study the relationship of oxalates and minerals in the accessions, a functional marker analysis was performed, based on the genes involved in oxalate metabolism and disease resistance in spinach. High level of genetic polymorphism was observed among the accessions represented with 115 polymorphic bands out of 130 bands. Heat map clustering represented the accessions from Asian countries (Pakistan, India, China, and Iran) as the most adaptable accessions to the local environment. The correlation between nutritional and genetic analysis also revealed the nutrient richness of these accessions along with good oxalate metabolism and disease resistance. Hence, these accessions could be considered as useful genotypes in future breeding programs.