Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 53: 109958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328293

RESUMO

This work presents an extensive dataset comprising images meticulously obtained from diverse geographic locations within Iraq, depicting both healthy and infected fig leaves affected by Ficus leafworm. This particular pest poses a significant threat to economic interests, as its infestations often lead to the defoliation of trees, resulting in reduced fruit production. The dataset comprises two distinct classes: infected and healthy, with the acquisition of images executed with precision during the fruiting season, employing state-of-the-art high-resolution equipment, as detailed in the specifications table. In total, the dataset encompasses a substantial 2,321 images, with 1,350 representing infected leaves and 971 depicting healthy ones. The images were acquired through a random sampling approach, ensuring a harmonious blend of balance and diversity across data emanating from distinct fig trees. The proposed dataset carries substantial potential for impact and utility, featuring essential attributes such as the binary classification of infected and healthy leaves. The presented dataset holds the potential to be a valuable resource for the pest control industry within the domains of agriculture and food production.

2.
Comput Intell Neurosci ; 2022: 2370190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685142

RESUMO

Melanoma is a kind of skin cancer caused by the irregular development of pigment-producing cells. Since melanoma detection efficiency is limited to different factors such as poor contrast among lesions and nearby skin regions, and visual resemblance among melanoma and non-melanoma lesions, intelligent computer-aided diagnosis (CAD) models are essential. Recently, computational intelligence (CI) and deep learning (DL) techniques are utilized for effective decision-making in the biomedical field. In addition, the fast-growing advancements in computer-aided surgeries and recent progress in molecular, cellular, and tissue engineering research have made CI an inevitable part of biomedical applications. In this view, the research work here develops a novel computational intelligence-based melanoma detection and classification technique using dermoscopic images (CIMDC-DIs). The proposed CIMDC-DI model encompasses different subprocesses. Primarily, bilateral filtering with fuzzy k-means (FKM) clustering-based image segmentation is applied as a preprocessing step. Besides, NasNet-based feature extractor with stochastic gradient descent is applied for feature extraction. Finally, the manta ray foraging optimization (MRFO) algorithm with a cascaded neural network (CNN) is exploited for the classification process. To ensure the potential efficiency of the CIMDC-DI technique, we conducted a wide-ranging simulation analysis, and the results reported its effectiveness over the existing recent algorithms with the maximum accuracy of 97.50%.


Assuntos
Melanoma , Neoplasias Cutâneas , Algoritmos , Inteligência Artificial , Dermoscopia/métodos , Humanos , Melanoma/diagnóstico por imagem , Melanoma/patologia , Redes Neurais de Computação , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia
3.
J Supercomput ; 78(15): 17403-17422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601090

RESUMO

Internet of Medical Things (IoMT) is network of interconnected medical devices (smart watches, pace makers, prosthetics, glucometer, etc.), software applications, and health systems and services. IoMT has successfully addressed many old healthcare problems. But it comes with its drawbacks essentially with patient's information privacy and security related issues that comes from IoMT architecture. Using obsolete systems can bring security vulnerabilities and draw attacker's attention emphasizing the need for effective solution to secure and protect the data traffic in IoMT network. Recently, intrusion detection system (IDS) is regarded as an essential security solution for protecting IoMT network. In the past decades, machines learning (ML) algorithms have demonstrated breakthrough results in the field of intrusion detection. Notwithstanding, to our knowledge, there is no work that investigates the power of machines learning algorithms for intrusion detection in IoMT network. This paper aims to fill this gap of knowledge investigating the application of different ML algorithms for intrusion detection in IoMT network. The investigation analysis includes ML algorithms such as K-nearest neighbor, Naïve Bayes, support vector machine, artificial neural network and decision tree. The benchmark dataset, Bot-IoT which is publicly available with comprehensive set of attacks was used to train and test the effectiveness of all ML models considered for investigation. Also, we used comprehensive set of evaluation metrics to compare the power of ML algorithms with regard to their detection accuracy for intrusion in IoMT networks. The outcome of the analysis provides a promising path to identify the best the machine learning approach can be used for building effective IDS that can safeguard IoMT network against malicious activities.

4.
Sensors (Basel) ; 20(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486383

RESUMO

Traditionally, tamper-proof steganography involves using efficient protocols to encrypt the stego cover image and/or hidden message prior to embedding it into the carrier object. However, as the inevitable transition to the quantum computing paradigm beckons, its immense computing power will be exploited to violate even the best non-quantum, i.e., classical, stego protocol. On its part, quantum walks can be tailored to utilise their astounding 'quantumness' to propagate nonlinear chaotic behaviours as well as its sufficient sensitivity to alterations in primary key parameters both important properties for efficient information security. Our study explores using a classical (i.e., quantum-inspired) rendition of the controlled alternate quantum walks (i.e., CAQWs) model to fabricate a robust image steganography protocol for cloud-based E-healthcare platforms by locating content that overlays the secret (or hidden) bits. The design employed in our technique precludes the need for pre and/or post encryption of the carrier and secret images. Furthermore, our design simplifies the process to extract the confidential (hidden) information since only the stego image and primary states to run the CAQWs are required. We validate our proposed protocol on a dataset of medical images, which exhibited remarkable outcomes in terms of their security, good visual quality, high resistance to data loss attacks, high embedding capacity, etc., making the proposed scheme a veritable strategy for efficient medical image steganography.


Assuntos
Algoritmos , Computação em Nuvem , Segurança Computacional , Processamento de Imagem Assistida por Computador , Telemedicina , Teoria Quântica
5.
Sensors (Basel) ; 19(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871162

RESUMO

Detection of abnormalities in wireless capsule endoscopy (WCE) images is a challenging task. Typically, these images suffer from low contrast, complex background, variations in lesion shape and color, which affect the accuracy of their segmentation and subsequent classification. This research proposes an automated system for detection and classification of ulcers in WCE images, based on state-of-the-art deep learning networks. Deep learning techniques, and in particular, convolutional neural networks (CNNs), have recently become popular in the analysis and recognition of medical images. The medical image datasets used in this study were obtained from WCE video frames. In this work, two milestone CNN architectures, namely the AlexNet and the GoogLeNet are extensively evaluated in object classification into ulcer or non-ulcer. Furthermore, we examine and analyze the images identified as containing ulcer objects to evaluate the efficiency of the utilized CNNs. Extensive experiments show that CNNs deliver superior performance, surpassing traditional machine learning methods by large margins, which supports their effectiveness as automated diagnosis tools.


Assuntos
Endoscopia por Cápsula/métodos , Redes Neurais de Computação , Úlcera/diagnóstico por imagem , Aprendizado Profundo , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA