Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8103, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582880

RESUMO

Antimicrobial resistance genes (ARG), such as extended-spectrum ß-lactamase (ESBL) and carbapenemase genes, are commonly carried on plasmids. Plasmids can transmit between bacteria, disseminate globally, and cause clinically important resistance. Therefore, targeting plasmids could reduce ARG prevalence, and restore the efficacy of existing antibiotics. Cobalt complexes possess diverse biological activities, including antimicrobial and anticancer properties. However, their effect on plasmid conjugation has not been explored yet. Here, we assessed the effect of four previously characterised bis(N-picolinamido)cobalt(II) complexes lacking antibacterial activity on plasmid conjugation in Escherichia coli and Klebsiella pneumoniae. Antimicrobial susceptibility testing of these cobalt complexes confirmed the lack of antibacterial activity in E. coli and K. pneumoniae. Liquid broth and solid agar conjugation assays were used to screen the activity of the complexes on four archetypical plasmids in E. coli J53. The cobalt complexes significantly reduced the conjugation of RP4, R6K, and R388 plasmids, but not pKM101, on solid agar in E. coli J53. Owing to their promising activity, the impact of cobalt complexes was tested on the conjugation of fluorescently tagged extended-spectrum ß-lactamase encoding pCTgfp plasmid in E. coli and carbapenemase encoding pKpQILgfp plasmid in K. pneumoniae, using flow cytometry. The complexes significantly reduced the conjugation of pKpQILgfp in K. pneumoniae but had no impact on pCTgfp conjugation in E. coli. The cobalt complexes did not have plasmid-curing activity, suggesting that they target conjugation rather than plasmid stability. To our knowledge, this is the first study to report reduced conjugation of clinically relevant plasmids with cobalt complexes. These cobalt complexes are not cytotoxic towards mammalian cells and are not antibacterial, therefore they could be optimised and employed as inhibitors of plasmid conjugation.


Assuntos
Anti-Infecciosos , Infecções por Klebsiella , Animais , Ágar , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , beta-Lactamases/genética , Escherichia coli/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Mamíferos/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética
3.
Crit Rev Microbiol ; : 1-18, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462915

RESUMO

Horizontal gene transfer plays a key role in the global dissemination of antimicrobial resistance (AMR). AMR genes are often carried on self-transmissible plasmids, which are shared amongst bacteria primarily by conjugation. Antibiotic use has been a well-established driver of the emergence and spread of AMR. However, the impact of commonly used non-antibiotic compounds and environmental pollutants on AMR spread has been largely overlooked. Recent studies found common prescription and over-the-counter drugs, artificial sweeteners, food preservatives, and environmental pollutants, can increase the conjugative transfer of AMR plasmids. The potential mechanisms by which these compounds promote plasmid transmission include increased membrane permeability, upregulation of plasmid transfer genes, formation of reactive oxygen species, and SOS response gene induction. Many questions remain around the impact of most non-antibiotic compounds on AMR plasmid conjugation in clinical isolates and the long-term impact on AMR dissemination. By elucidating the role of routinely used pharmaceuticals, food additives, and pollutants in the dissemination of AMR, action can be taken to mitigate their impact by closely monitoring use and disposal. This review will discuss recent progress on understanding the influence of non-antibiotic compounds on plasmid transmission, the mechanisms by which they promote transfer, and the level of risk they pose.

4.
Nat Rev Microbiol ; 21(5): 280-295, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36411397

RESUMO

Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies.


Assuntos
Antibacterianos , Bactérias , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Saúde Global
5.
Sci Rep ; 12(1): 4752, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35306531

RESUMO

Tripartite resistance-nodulation-division (RND) efflux pumps, such as AcrAB-TolC of Salmonella Typhimurium, contribute to antibiotic resistance and comprise an inner membrane RND-transporter, an outer membrane factor, and a periplasmic adaptor protein (PAP). The role of the PAP in the assembly and active transport process remains poorly understood. Here, we identify the functionally critical residues involved in PAP-RND-transporter binding between AcrA and AcrB and show that the corresponding RND-binding residues in the closely related PAP AcrE, are also important for its interaction with AcrB. We also report a residue in the membrane-proximal domain of AcrA, that when mutated, differentially affects the transport of substrates utilising different AcrB efflux channels, namely channels 1 and 2. This supports a potential role for the PAP in sensing the substrate-occupied state of the proximal binding pocket of the transporter and substrate vetting. Understanding the PAP's role in the assembly and function of tripartite RND pumps can guide novel ways to inhibit their function to combat antibiotic resistance.


Assuntos
Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Periplasma/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
6.
J Antimicrob Chemother ; 76(10): 2558-2564, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34278432

RESUMO

BACKGROUND: Resistance-nodulation-division (RND) efflux pumps are important mediators of antibiotic resistance. RND pumps, including the principal multidrug efflux pump AcrAB-TolC in Salmonella, are tripartite systems with an inner membrane RND transporter, a periplasmic adaptor protein (PAP) and an outer membrane factor (OMF). We previously identified the residues required for binding between the PAP AcrA and the RND transporter AcrB and have demonstrated that PAPs can function with non-cognate transporters. AcrE and AcrD/AcrF are homologues of AcrA and AcrB, respectively. Here, we show that AcrE can interact with AcrD, which does not possess its own PAP, and establish that the residues previously identified in AcrB binding are also involved in AcrD binding. METHODS: The acrD and acrE genes were expressed in a strain lacking acrABDEF (Δ3RND). PAP residues involved in promiscuous interactions were predicted based on previously defined PAP-RND interactions and corresponding mutations generated in acrA and acrE. Antimicrobial susceptibility of the mutant strains was determined. RESULTS: Co-expression of acrD and acrE significantly decreased susceptibility of the Δ3RND strain to AcrD substrates, showing that AcrE can form a functional complex with AcrD. The substrate profile of Salmonella AcrD differed from that of Escherichia coli AcrD. Mutations targeting the previously defined PAP-RND interaction sites in AcrA/AcrE impaired efflux of AcrD-dependent substrates. CONCLUSIONS: These data indicate that AcrE forms an efflux-competent pump with AcrD and thus presents an alternative PAP for this pump. Mutagenesis of the conserved RND binding sites validates the interchangeability of AcrA and AcrE, highlighting them as potential drug targets for efflux inhibition.


Assuntos
Proteínas Periplásmicas , Salmonella typhimurium , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Salmonella typhimurium/genética , Sorogrupo
7.
Chem Rev ; 121(9): 5479-5596, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33909410

RESUMO

Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.


Assuntos
Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sistemas de Secreção Tipo I/metabolismo , Transportadores de Cassetes de Ligação de ATP , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas/química , Proteínas de Membrana Transportadoras/química , Simulação de Dinâmica Molecular , Conformação Proteica , Relação Estrutura-Atividade , Sistemas de Secreção Tipo I/química
8.
J Vis Exp ; (167)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33554970

RESUMO

The effective prescription of antibiotics for the bacterial biofilms present within the lungs of individuals with cystic fibrosis (CF) is limited by a poor correlation between antibiotic susceptibility testing (AST) results using standard diagnostic methods (e.g., broth microdilution, disk diffusion, or Etest) and clinical outcomes after antibiotic treatment. Attempts to improve AST by the use of off-the-shelf biofilm growth platforms show little improvement in results. The limited ability of in vitro biofilm systems to mimic the physicochemical environment of the CF lung and, therefore bacterial physiology and biofilm architecture, also acts as a brake on the discovery of novel therapies for CF infection. Here, we present a protocol to perform AST of CF pathogens grown as mature, in vivo-like biofilms in an ex vivo CF lung model comprised of pig bronchiolar tissue and synthetic CF sputum (ex vivo pig lung, EVPL). Several in vitro assays exist for biofilm susceptibility testing, using either standard laboratory medium or various formulations of synthetic CF sputum in microtiter plates. Both growth medium and biofilm substrate (polystyrene plate vs. bronchiolar tissue) are likely to affect biofilm antibiotic tolerance. We show enhanced tolerance of clinical Pseudomonas aeruginosa and Staphylococcus aureus isolates in the ex vivo model; the effects of antibiotic treatment of biofilms is not correlated with the minimum inhibitory concentration (MIC) in standard microdilution assays or a sensitive/resistant classification in disk diffusion assays. The ex vivo platform could be used for bespoke biofilm AST of patient samples and as an enhanced testing platform for potential antibiofilm agents during pharmaceutical research and development. Improving the prescription or acceleration of antibiofilm drug discovery through the use of more in vivo-like testing platforms could drastically improve health outcomes for individuals with CF, as well as reduce the costs of clinical treatment and discovery research.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fibrose Cística/microbiologia , Pulmão/microbiologia , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Animais , Biofilmes/crescimento & desenvolvimento , Colistina/farmacologia , Contagem de Colônia Microbiana , Dissecação , Floxacilina/farmacologia , Humanos , Linezolida/farmacologia , Pulmão/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Escarro/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Suínos
9.
Future Microbiol ; 15: 143-157, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073314

RESUMO

Rresistance-nodulation-division (RND) efflux pumps in Gram-negative bacteria remove multiple, structurally distinct classes of antimicrobials from inside bacterial cells therefore directly contributing to multidrug resistance. There is also emerging evidence that many other mechanisms of antibiotic resistance rely on the intrinsic resistance conferred by RND efflux. In addition to their role in antibiotic resistance, new information has become available about the natural role of RND pumps including their established role in virulence of many Gram-negative organisms. This review also discusses the recent advances in understanding the regulation and structure of RND efflux pumps.


Assuntos
Farmacorresistência Bacteriana Múltipla , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/fisiologia , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/fisiologia , Transporte Biológico , Virulência
10.
PLoS Pathog ; 15(12): e1008101, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31877175

RESUMO

Active efflux due to tripartite RND efflux pumps is an important mechanism of clinically relevant antibiotic resistance in Gram-negative bacteria. These pumps are also essential for Gram-negative pathogens to cause infection and form biofilms. They consist of an inner membrane RND transporter; a periplasmic adaptor protein (PAP), and an outer membrane channel. The role of PAPs in assembly, and the identities of specific residues involved in PAP-RND binding, remain poorly understood. Using recent high-resolution structures, four 3D sites involved in PAP-RND binding within each PAP protomer were defined that correspond to nine discrete linear binding sequences or "binding boxes" within the PAP sequence. In the important human pathogen Salmonella enterica, these binding boxes are conserved within phylogenetically-related PAPs, such as AcrA and AcrE, while differing considerably between divergent PAPs such as MdsA and MdtA, despite overall conservation of the PAP structure. By analysing these binding sequences we created a predictive model of PAP-RND interaction, which suggested the determinants that may allow promiscuity between certain PAPs, but discrimination of others. We corroborated these predictions using direct phenotypic data, confirming that only AcrA and AcrE, but not MdtA or MsdA, can function with the major RND pump AcrB. Furthermore, we provide functional validation of the involvement of the binding boxes by disruptive site-directed mutagenesis. These results directly link sequence conservation within identified PAP binding sites with functional data providing mechanistic explanation for assembly of clinically relevant RND-pumps and explain how Salmonella and other pathogens maintain a degree of redundancy in efflux mediated resistance. Overall, our study provides a novel understanding of the molecular determinants driving the RND-PAP recognition by bridging the available structural information with experimental functional validation thus providing the scientific community with a predictive model of pump-contacts that could be exploited in the future for the development of targeted therapeutics and efflux pump inhibitors.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Infecções Bacterianas/tratamento farmacológico , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Feminino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos BALB C , Periplasma/efeitos dos fármacos , Periplasma/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/metabolismo
11.
Front Microbiol ; 10: 2319, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636625

RESUMO

Gram-negative infections are increasingly difficult to treat because of their impermeable outer membranes (OM) and efflux pumps which maintain a low intracellular accumulation of antibiotics within cells. Historically, measurement of accumulation of drugs or dyes within Gram-negative cells has concentrated on analyzing whole bacterial populations. Here, we have developed a method to measure the intracellular accumulation of ethidium bromide, a fluorescent DNA intercalating dye, in single cells using flow cytometry. Bacterial cells were stained with SYTOTM 84 to easily separate cells from background cell debris. Ethidium bromide fluorescence was then measured within the SYTOTM 84 positive population to measure accumulation. In S. Typhimurium SL1344, ethidium bromide accumulation was low, however, in a number of efflux mutants, accumulation of ethidium bromide increased more than twofold, comparable to previous whole population analysis of accumulation. We demonstrate simultaneous measurement of ethidium bromide accumulation and GFP allowing quantification of gene expression or other facets of phenotype in single cells. In addition, we show here that this assay can be adapted for use with efflux inhibitors, with both Gram-negative and Gram-positive bacteria, and with other fluorescent substrates with different fluorescence spectra.

12.
J Antimicrob Chemother ; 73(8): 2003-2020, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29506149

RESUMO

Efflux pumps are widely implicated in antibiotic resistance because they can extrude the majority of clinically relevant antibiotics from within cells to the extracellular environment. However, there is increasing evidence from many studies to suggest that the pumps also play a role in biofilm formation. These studies have involved investigating the effects of efflux pump gene mutagenesis and efflux pump inhibitors on biofilm formation, and measuring the levels of efflux pump gene expression in biofilms. In particular, several key pathogenic species associated with increasing multidrug resistance, such as Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, have been investigated, whilst other studies have focused on Salmonella enterica serovar Typhimurium as a model organism and problematic pathogen. Studies have shown that efflux pumps, including AcrAB-TolC of E. coli, MexAB-OprM of P. aeruginosa, AdeFGH of A. baumannii and AcrD of S. enterica, play important roles in biofilm formation. The substrates for such pumps, and whether changes in their efflux activity affect biofilm formation directly or indirectly, remain to be determined. By understanding the roles that efflux pumps play in biofilm formation, novel therapeutic strategies can be developed to inhibit their function, to help disrupt biofilms and improve the treatment of infections. This review will discuss and evaluate the evidence for the roles of efflux pumps in biofilm formation and the potential approaches to overcome the increasing problem of biofilm-based infections.


Assuntos
Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana Múltipla , Proteínas de Membrana Transportadoras/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Moduladores de Transporte de Membrana/farmacologia , Percepção de Quorum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA