Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(34): 38730-38743, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32706575

RESUMO

Three-dimensional (3D) bioprinting, where cells, hydrogels, and structural polymers can be printed layer by layer into complex designs, holds great promise for advances in medicine and the biomedical sciences. In principle, this technique enables the creation of highly patient-specific disease models and biomedical implants. However, an ability to tailor surface biocompatibility and interfacial bonding between printed components, such as polymers and hydrogels, is currently lacking. Here we demonstrate that an atmospheric pressure plasma jet (APPJ) can locally activate polymeric surfaces for the reagent-free covalent attachment of proteins and hydrogel in a single-step process at desired locations. Polyethylene and poly-ε-caprolactone were used as example polymers. Covalent attachment of the proteins and hydrogel was demonstrated by resistance to removal by rigorous sodium dodecyl sulfate washing. The immobilized protein and hydrogel layers were analyzed using Fourier transform infrared and X-ray photoelectron spectroscopy. Importantly, the APPJ surface activation also rendered the polymer surfaces mildly hydrophilic as required for optimum biocompatibility. Water contact angles were observed to be stable within a range where the conformation of biomolecules is preserved. Single and double electrode designs of APPJs were compared in their characteristics relevant to localized surface functionalization, plume length, and shape. As a proof of efficacy in a biological context, APPJ-treated polyethylene functionalized with fibronectin was used to demonstrate improvements in cell adhesion and proliferation. These results have important implications for the development of a new generation of 3D bioprinters capable of spatially patterned and tailored surface functionalization performed during the 3D printing process in situ.


Assuntos
Materiais Biocompatíveis/química , Bioimpressão/métodos , Gases em Plasma/química , Polímeros/química , Animais , Pressão Atmosférica , Materiais Biocompatíveis/farmacologia , Bovinos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Eletrodos , Humanos , Hidrogéis/química , Impressão Tridimensional , Soroalbumina Bovina/química , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA