Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893721

RESUMO

Poor long-term survival in localized high-risk soft tissue sarcomas (STSs) of the extremities and trunk highlights the need to identify new prognostic factors. CXCR4 is a chemokine receptor involved in tumor progression, angiogenesis, and metastasis. The aim of this study was to evaluate the association between CXCR4 expression in tumor tissue and survival in STSs patients treated with neoadjuvant therapy. CXCR4 expression was retrospectively determined by immunohistochemical analysis in serial specimens including initial biopsies, tumors post-neoadjuvant treatment, and tumors after relapse. We found that a positive cytoplasmatic expression of CXCR4 in tumors after neoadjuvant treatment was a predictor of poor recurrence-free survival (RFS) (p = 0.003) and overall survival (p = 0.019) in synovial sarcomas. We also found that positive nuclear CXCR4 expression in the initial biopsies was associated with poor RFS (p = 0.022) in undifferentiated pleomorphic sarcomas. In conclusion, our study adds to the evidence that CXCR4 expression in tumor tissue is a promising prognostic factor for STSs.

2.
Acta Biomater ; 170: 543-555, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683965

RESUMO

The need for more effective and precision medicines for cancer has pushed the exploration of new materials appropriate for drug delivery and imaging, and alternative receptors for targeting. Among the most promising strategies, finding suitable cell surface receptors and targeting agents for cancer-associated platelet derived growth factor receptor ß (PDGFR-ß)+ stromal fibroblasts is highly appealing. As a neglected target, this cell type mechanically and biologically supports the growth, progression, and infiltration of solid tumors in non-small cell lung, breast, pancreatic, and colorectal cancers. We have developed a family of PDGFR-ß-targeted nanoparticles based on biofabricated, self-assembling proteins, upon hierarchical and iterative selective processes starting from four initial candidates. The modular protein PDGFD-GFP-H6 is well produced in recombinant bacteria, resulting in structurally robust oligomeric particles that selectively penetrates into PDGFR-ß+ stromal fibroblasts in a dose-dependent manner, by means of the PDGFR-ß ligand PDGFD. Upon in vivo administration, these GFP-carrying protein nanoparticles precisely accumulate in tumor tissues and enlighten them for IVIS observation. When GFP is replaced by a microbial toxin, selective tumor tissue destruction is observed associated with a significant reduction in tumor volume growth. The presented data validate the PDGFR-ß/PDGFD pair as a promising toolbox for targeted drug delivery in the tumor microenvironment and oligomeric protein nanoparticles as a powerful instrument to mediate highly selective biosafe targeting in cancer through non-cancer cells. STATEMENT OF SIGNIFICANCE: We have developed a transversal platform for nanoparticle-based drug delivery into cancer-associated fibroblasts. This is based on the engineered modular protein PDGFD-GFP-H6 that spontaneously self-assemble and selectively penetrates into PDGFR-ß+ stromal fibroblasts in a dose-dependent manner, by means of the PDGFR-ß ligand PDGFD. In vivo, these protein nanoparticles accumulate in tumor and when incorporating a microbial toxin, they destroy tumor tissues with a significant reduction in tumor volume, in absence of side toxicities. The data presented here validate the PDGFR-ß/PDGFD pair as a fully versatile toolbox for targeted drug delivery in the tumor microenvironment intended as a synergistic treatment.

3.
Biomed Pharmacother ; 164: 114976, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37276641

RESUMO

Two human proteins involved in the inflammatory cell death, namely Gasdermin D (GSDMD) and the Mixed Lineage Kinase Domain-Like (MLKL) protein have been engineered to accommodate an efficient ligand of the tumoral cell marker CXCR4, and a set of additional peptide agents that allow their spontaneous self-assembling. Upon production in bacterial cells and further purification, both proteins organized as stable nanoparticles of 46 and 54 nm respectively, that show, in this form, a moderate but dose-dependent cytotoxicity in cell culture. In vivo, and when administered in mouse models of colorectal cancer through repeated doses, the nanoscale forms of tumor-targeted GSDMD and, at a lesser extent, of MLKL promoted CD8+ and CD20+ lymphocyte infiltration in the tumor and an important reduction of tumor size, in absence of systemic toxicity. The potential of these novel pharmacological agents as anticancer drugs is discussed in the context of synergistic approaches to more effective cancer treatments.


Assuntos
Antineoplásicos , Nanopartículas , Animais , Camundongos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Piroptose , Antineoplásicos/farmacologia , Linfócitos
4.
Biomedicines ; 10(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35884987

RESUMO

Advanced endometrial cancer (EC) lacks therapy, thus, there is a need for novel treatment targets. CXCR4 overexpression is associated with a poor prognosis in several cancers, whereas its inhibition prevents metastases. We assessed CXCR4 expression in EC in women by using IHC. Orthotopic models were generated with transendometrial implantation of CXCR4-transduced EC cells. After in vitro evaluation of the CXCR4-targeted T22-GFP-H6 nanocarrier, subcutaneous EC models were used to study its uptake in tumor and normal organs. Of the women, 91% overexpressed CXCR4, making them candidates for CXCR4-targeted therapies. Thus, we developed CXCR4+ EC mouse models to improve metastagenesis compared to current models and to use them to develop novel CXCR4-targeted therapies for unresponsive EC. It showed enhanced dissemination, especially in the lungs and liver, and displayed 100% metastasis penetrance at all clinically relevant sites with anti-hVimentin IHC, improving detection sensitivity. Regarding the CXCR4-targeted nanocarrier, 60% accumulated in the SC tumor; therefore, selectively targeting CXCR4+ cancer cells, without toxicity in non-tumor organs. Our CXCR4+ EC models will allow testing of novel CXCR4-targeted drugs and development of nanomedicines derived from T22-GFP-H6 to deliver drugs to CXCR4+ cells in advanced EC. This novel approach provides a therapeutic option for women with metastatic, high risk or recurrent EC that have a dismal prognosis and lack effective therapies.

5.
Acta Pharm Sin B ; 12(5): 2578-2591, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646535

RESUMO

Loco-regional recurrences and distant metastases represent the main cause of head and neck squamous cell carcinoma (HNSCC) mortality. The overexpression of chemokine receptor 4 (CXCR4) in HNSCC primary tumors associates with higher risk of developing loco-regional recurrences and distant metastases, thus making CXCR4 an ideal entry pathway for targeted drug delivery. In this context, our group has generated the self-assembling protein nanocarrier T22-GFP-H6, displaying multiple T22 peptidic ligands that specifically target CXCR4. This study aimed to validate T22-GFP-H6 as a suitable nanocarrier to selectively deliver cytotoxic agents to CXCR4+ tumors in a HNSCC model. Here we demonstrate that T22-GFP-H6 selectively internalizes in CXCR4+ HNSCC cells, achieving a high accumulation in CXCR4+ tumors in vivo, while showing negligible nanocarrier distribution in non-tumor bearing organs. Moreover, this T22-empowered nanocarrier can incorporate bacterial toxin domains to generate therapeutic nanotoxins that induce cell death in CXCR4-overexpressing tumors in the absence of histological alterations in normal organs. Altogether, these results show the potential use of this T22-empowered nanocarrier platform to incorporate polypeptidic domains of choice to selectively eliminate CXCR4+ cells in HNSCC. Remarkably, to our knowledge, this is the first study testing targeted protein-only nanoparticles in this cancer type, which may represent a novel treatment approach for HNSCC patients.

6.
Drug Deliv ; 29(1): 1384-1397, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35532120

RESUMO

Colorectal cancer (CRC) remains the third cause of cancer-related mortality in Western countries, metastases are the main cause of death. CRC treatment remains limited by systemic toxicity and chemotherapy resistance. Therefore, nanoparticle-mediated delivery of cytotoxic agents selectively to cancer cells represents an efficient strategy to increase the therapeutic index and overcome drug resistance. We have developed the T22-PE24-H6 therapeutic protein-only nanoparticle that incorporates the exotoxin A from Pseudomonas aeruginosa to selectively target CRC cells because of its multivalent ligand display that triggers a high selectivity interaction with the CXCR4 receptor overexpressed on the surface of CRC stem cells. We here observed a CXCR4-dependent cytotoxic effect for T22-PE24-H6, which was not mediated by apoptosis, but instead capable of inducing a time-dependent and sequential activation of pyroptotic markers in CRC cells in vitro. Next, we demonstrated that repeated doses of T22-PE24-H6 inhibit tumor growth in a subcutaneous CXCR4+ CRC model, also through pyroptotic activation. Most importantly, this nanoparticle also blocked the development of lymphatic and hematogenous metastases, in a highly aggressive CXCR4+ SW1417 orthotopic CRC model, in the absence of systemic toxicity. This targeted drug delivery approach supports for the first time the clinical relevance of inducing GSDMD-dependent pyroptosis, a cell death mechanism alternative to apoptosis, in CRC models, leading to the selective elimination of CXCR4+ cancer stem cells, which are associated with resistance, metastases and anti-apoptotic upregulation.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Piroptose , Receptores CXCR4 , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Metástase Neoplásica/prevenção & controle , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR4/uso terapêutico , Transdução de Sinais
7.
Pharmaceutics ; 14(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35456719

RESUMO

Loco-regional recurrences and metastasis represent the leading causes of death in head and neck squamous cell carcinoma (HNSCC) patients, highlighting the need for novel therapies. Chemokine receptor 4 (CXCR4) has been related to loco-regional and distant recurrence and worse patient prognosis. In this regard, we developed a novel protein nanoparticle, T22-DITOX-H6, aiming to selectively deliver the diphtheria toxin cytotoxic domain to CXCR4+ HNSCC cells. The antimetastatic effect of T22-DITOX-H6 was evaluated in vivo in an orthotopic mouse model. IVIS imaging system was utilized to assess the metastatic dissemination in the mouse model. Immunohistochemistry and histopathological analyses were used to study the CXCR4 expression in the cancer cells, to evaluate the effect of the nanotoxin treatment, and its potential off-target toxicity. In this study, we report that CXCR4+ cancer cells were present in the invasive tumor front in an orthotopic mouse model. Upon repeated T22-DITOX-H6 administration, the number of CXCR4+ cancer cells was significantly reduced. Similarly, nanotoxin treatment effectively blocked regional and distant metastatic dissemination in the absence of systemic toxicity in the metastatic HNSCC mouse model. The repeated administration of T22-DITOX-H6 clearly abrogates tumor invasiveness and metastatic dissemination without inducing any off-target toxicity. Thus, T22-DITOX-H6 holds great promise for the treatment of CXCR4+ HNSCC patients presenting worse prognosis.

8.
Biomed Pharmacother ; 150: 112940, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35421785

RESUMO

High rates of relapsed and refractory diffuse large B-cell lymphoma (DLBCL) patients and life-threatening side effects associated with immunochemotherapy make an urgent need to develop new therapies for DLBCL patients. Immunotoxins seem very potent anticancer therapies but their use is limited because of their high toxicity. Accordingly, the self-assembling polypeptidic nanoparticle, T22-DITOX-H6, incorporating the diphtheria toxin and targeted to CXCR4 receptor, which is overexpressed in DLBCL cells, could offer a new strategy to selectively eliminate CXCR4+ DLBCL cells without adverse effects. In these terms, our work demonstrated that T22-DITOX-H6 showed high specific cytotoxicity towards CXCR4+ DLBCL cells at the low nanomolar range, which was dependent on caspase-3 cleavage, PARP activation and an increase of cells in early/late apoptosis. Repeated nanoparticle administration induced antineoplastic effect, in vivo and ex vivo, in a disseminated immunocompromised mouse model generated by intravenous injection of human luminescent CXCR4+ DLBCL cells. Moreover, T22-DITOX-H6 inhibited tumor growth in a subcutaneous immunocompetent mouse model bearing mouse CXCR4+ lymphoma cells in the absence of alterations in the hemogram, liver or kidney injury markers or on-target or off-target organ histology. Thus, T22-DITOX-H6 demonstrates a selective cytotoxicity towards CXCR4+ DLBCL cells without the induction of toxicity in non-lymphoma infiltrated organs nor hematologic toxicity.


Assuntos
Antineoplásicos , Linfoma Difuso de Grandes Células B , Nanopartículas , Receptores CXCR4 , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Toxina Diftérica/farmacologia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Imunocompetência , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Receptores CXCR4/metabolismo
9.
J Exp Clin Cancer Res ; 41(1): 49, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120582

RESUMO

BACKGROUND: Therapy resistance, which leads to the development of loco-regional relapses and distant metastases after treatment, constitutes one of the major problems that head and neck squamous cell carcinoma (HNSCC) patients currently face. Thus, novel therapeutic strategies are urgently needed. Targeted drug delivery to the chemokine receptor 4 (CXCR4) represents a promising approach for HNSCC management. In this context, we have developed the self-assembling protein nanotoxins T22-PE24-H6 and T22-DITOX-H6, which incorporate the de-immunized catalytic domain of Pseudomonas aeruginosa (PE24) exotoxin A and the diphtheria exotoxin (DITOX) domain, respectively. Both nanotoxins contain the T22 peptide ligand to specifically target CXCR4-overexpressing HNSCC cells. In this study, we evaluate the potential use of T22-PE24-H6 and T22-DITOX-H6 nanotoxins for the treatment of HNSCC. METHODS: T22-PE24-H6 and T22-DITOX-H6 CXCR4-dependent cytotoxic effect was evaluated in vitro in two different HNSCC cell lines. Both nanotoxins cell death mechanisms were assessed in HNSCC cell lines by phase-contrast microscopy, AnnexinV/ propidium iodide (PI) staining, lactate dehydrogenase (LDH) release assays, and western blotting. Nanotoxins antitumor effect in vivo was studied in a CXCR4+ HNSCC subcutaneous mouse model. Immunohistochemistry, histopathology, and toxicity analyses were used to evaluate both nanotoxins antitumor effect and possible treatment toxicity. GSMDE and CXCR4 expression in HNSCC patient tumor samples was also assessed by immunohistochemical staining. RESULTS: First, we found that both nanotoxins exhibit a potent CXCR4-dependent cytotoxic effect in vitro. Importantly, nanotoxin treatment triggered caspase-3/Gasdermin E (GSDME)-mediated pyroptosis. The activation of this alternative cell death pathway that differs from traditional apoptosis, becomes a promising strategy to bypass therapy resistance. In addition, T22-PE24-H6 and T22-DITOX-H6 displayed a potent antitumor effect in the absence of systemic toxicity in a CXCR4+ subcutaneous HNSCC mouse model. Lastly, GSDME was found to be overexpressed in tumor tissue from HNSCC patients, highlighting the relevance of this strategy. CONCLUSIONS: Altogether, our results show that T22-PE24-H6 and T22-DITOX-H6 represent a promising therapy for HNSCC patients. Remarkably, this is the first study showing that both nanotoxins are capable of activating caspase-3/GSDME-dependent pyroptosis, opening a novel avenue for HNSCC treatment.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanotecnologia/métodos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose/genética , Receptores CXCR4/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Animais , Feminino , Humanos , Camundongos , Camundongos Nus
10.
J Control Release ; 343: 277-287, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051493

RESUMO

Self-assembling non-immunoglobulin scaffold proteins are a promising class of nanoscale carriers for drug delivery and interesting alternatives to antibody-based carriers that are not sufficiently efficient in systemic administration. To exploit their potentialities in clinics, protein scaffolds need to be further tailored to confer appropriate targeting and to overcome their potential immunogenicity, short half-life in plasma and proteolytic degradation. We have here engineered three human scaffold proteins as drug carrier nanoparticles to target the cytokine receptor CXCR4, a tumoral cell surface marker of high clinical relevance. The capability of these scaffolds for the selective delivery of Monomethyl auristatin E has been comparatively evaluated in a disseminated mouse model of human, CXCR4+ acute myeloid leukemia. Monomethyl auristatin E is an ultra-potent anti-mitotic drug used against a range of hematological neoplasias, which because of its high toxicity is not currently administered as a free drug but as payload in antibody-drug conjugates. The protein nanoconjugates generated here offer a collective strength of simple manufacturing process, high proteolytic and structural stability and multivalent ligand receptor interactions that result in a highly efficient and selective delivery of the payload drug and in a potent anticancer effect. The approach shown here stresses this class of human scaffold proteins as promising alternatives to antibodies for targeted drug delivery in the rapidly evolving drug development landscape.


Assuntos
Antineoplásicos , Imunoconjugados , Animais , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Imunoconjugados/química , Camundongos , Nanoconjugados , Proteínas
11.
Cell Rep ; 38(4): 110227, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35081338

RESUMO

In pancreatic ductal adenocarcinoma (PDAC), differentiation of pancreatic stellate cells (PSCs) into myofibroblast-like cancer-associated fibroblasts (CAFs) can both promote and suppress tumor progression. Here, we show that the Rho effector protein kinase N2 (PKN2) is critical for PSC myofibroblast differentiation. Loss of PKN2 is associated with reduced PSC proliferation, contractility, and alpha-smooth muscle actin (α-SMA) stress fibers. In spheroid co-cultures with PDAC cells, loss of PKN2 prevents PSC invasion but, counter-intuitively, promotes invasive cancer cell outgrowth. PKN2 deletion induces a myofibroblast to inflammatory CAF switch in the PSC matrisome signature both in vitro and in vivo. Further, deletion of PKN2 in the pancreatic stroma induces more locally invasive, orthotopic pancreatic tumors. Finally, we demonstrate that a PKN2KO matrisome signature predicts poor outcome in pancreatic and other solid human cancers. Our data indicate that suppressing PSC myofibroblast function can limit important stromal tumor-suppressive mechanisms, while promoting a switch to a cancer-supporting CAF phenotype.


Assuntos
Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/patologia , Animais , Humanos , Camundongos , Células Estreladas do Pâncreas/metabolismo , Fenótipo , Proteína Quinase C/metabolismo , Microambiente Tumoral/fisiologia
12.
Biomaterials ; 280: 121258, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34847435

RESUMO

Current therapy in acute myeloid leukemia (AML) is based on chemotherapeutic drugs administered at high doses, lacking targeting selectivity and displaying poor therapeutic index because of severe adverse effects. Here, we develop a novel nanoconjugate that combines a self-assembled, multivalent protein nanoparticle, targeting the CXCR4 receptor, with an Oligo-Ara-C prodrug, a pentameric form of Ara-C, to highly increase the delivered payload to target cells. This 13.4 nm T22-GFP-H6-Ara-C nanoconjugate selectively eliminates CXCR4+ AML cells, which are protected by its anchoring to the bone marrow (BM) niche, being involved in AML progression and chemotherapy resistance. This nanoconjugate shows CXCR4-dependent internalization and antineoplastic activity in CXCR4+ AML cells in vitro. Moreover, repeated T22-GFP-H6-Ara-C administration selectively eliminates CXCR4+ leukemic cells in BM, spleen and liver. The leukemic dissemination blockage induced by T22-GFP-H6-Ara-C is significantly more potent than buffer or Oligo-Ara-C-treated mice, showing no associated on-target or off-target toxicity and, therefore, reaching a highly therapeutic window. In conclusion, T22-GFP-H6-Ara-C exploits its 11 ligands-multivalency to enhance target selectivity, while the Oligo-Ara-C prodrug multimeric form increases 5-fold its payload. This feature combination offers an alternative nanomedicine with higher activity and greater tolerability than current intensive or non-intensive chemotherapy for AML patients.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Pró-Fármacos , Animais , Antineoplásicos/farmacologia , Citarabina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Nanoconjugados/uso terapêutico , Pró-Fármacos/uso terapêutico
13.
Cancers (Basel) ; 15(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36612081

RESUMO

Patients with advanced endometrial cancer (EC) show poor outcomes. Thus, the development of new therapeutic approaches to prevent metastasis development in high-risk patients is an unmet need. CXCR4 is overexpressed in EC tumor tissue, epitomizing an unexploited therapeutic target for this malignancy. The in vitro antitumor activity of two CXCR4-targeted nanoparticles, including either the C. diphtheriae (T22-DITOX-H6) or P. aeruginosa (T22-PE24-H6) toxin, was evaluated using viability assays. Apoptotic activation was assessed by DAPI and caspase-3 and PARP cleavage in cell blocks. Both nanotoxins were repeatedly administrated to a subcutaneous EC mouse model, whereas T22-DITOX-H6 was also used in a highly metastatic EC orthotopic model. Tumor burden was assessed through bioluminescence, while metastatic foci and toxicity were studied using histological or immunohistochemical analysis. We found that both nanotoxins exerted a potent antitumor effect both in vitro and in vivo via apoptosis and extended the survival of nanotoxin-treated mice without inducing any off-target toxicity. Repeated T22-DITOX-H6 administration in the metastatic model induced a dramatic reduction in tumor burden while significantly blocking peritoneal, lung and liver metastasis without systemic toxicity. Both nanotoxins, but especially T22-DITOX-H6, represent a promising therapeutic alternative for EC patients that have a dismal prognosis and lack effective therapies.

14.
Acta Biomater ; 130: 211-222, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116228

RESUMO

Green fluorescent protein (GFP) is a widely used scaffold for protein-based targeted nanomedicines because of its high biocompatibility, biological neutrality and outstanding structural stability. However, being immunogenicity a major concern in the development of drug carriers, the use of exogenous proteins such as GFP in clinics might be inadequate. Here we report a human nidogen-derived protein (HSNBT), rationally designed to mimic the structural and functional properties of GFP as a scaffold for nanomedicine. For that, a GFP-like ß-barrel, containing the G2 domain of the human nidogen, has been rationally engineered to obtain a biologically neutral protein that self-assembles as 10nm-nanoparticles. This scaffold is the basis of a humanized nanoconjugate, where GFP, from the well-characterized protein T22-GFP-H6, has been substituted by the nidogen-derived GFP-like HSNBT protein. The resulting construct T22-HSNBT-H6, is a humanized CXCR4-targeted nanoparticle that selectively delivers conjugated genotoxic Floxuridine into cancer CXCR4+ cells. Indeed, the administration of T22-HSNBT-H6-FdU in a CXCR4-overexpressing colorectal cancer mouse model results in an even more efficient selective antitumoral effect than that shown by its GFP-counterpart, in absence of systemic toxicity. Therefore, the newly developed GFP-like protein scaffold appears as an ideal candidate for the development of humanized protein nanomaterials and successfully supports the tumor-targeted nanoscale drug T22-HSNBT-H6-FdU. STATEMENT OF SIGNIFICANCE: Targeted nanomedicine seeks for humanized and biologically neutral protein carriers as alternative of widely used but immunogenic exogenous protein scaffolds such as green fluorescent protein (GFP). This work reports for the first time the rational engineering of a human homolog of the GFP based in the human nidogen (named HSNBT) that shows full potential to be used in humanized protein-based targeted nanomedicines. This has been demonstrated in T22-HSNBT-H6-FdU, a humanized CXCR4-targeted protein nanoconjugate able to selectively deliver its genotoxic load into cancer cells.


Assuntos
Portadores de Fármacos , Nanomedicina , Sistemas de Liberação de Medicamentos , Proteínas de Fluorescência Verde , Humanos , Nanoconjugados
15.
J Control Release ; 335: 117-129, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004204

RESUMO

Nanomedicine has opened an opportunity to improve current clinical practice by enhancing the selectivity in the delivery of antitumor drugs to specific cancer cells. These new strategies are able to bypass toxicity on normal cells increasing the effectiveness of current anticancer treatments. In acute myeloid leukemia (AML) current chemotherapy treatments generate a relevant toxic impact in normal cells and severe side effects or even patient death. In this study, we have designed a self-assembling protein nanoparticle, T22-DITOX-H6, which incorporates a ligand (T22) targeting CXCR4-overexpressing (CXCR4+) cells, and a potent cytotoxic diphtheria toxin domain. CXCR4 is overexpressed in AML leukemic cells and associates with poor prognosis, being, therefore, a relevant clinical target. We demonstrate here that T22-DITOX-H6 induces apoptosis in CXCR4+ leukemic cells through CXCR4-dependent internalization. In addition, repeated T22-DITOX-H6 treatment (10 µg/dose per 10 doses, intravenously injected) in a disseminated AML mouse model (NSG mice intravenously injected with THP-1-Luci cells, n = 10 per group) potently blocks the dissemination of AML cells in bone marrow, spleen and liver of treated mice, without inducing toxicity in healthy tissues. In conclusion, our strategy of selectively ablating CXCR4 positive leukemic cells by administering the T22-DITOX-H6 nanoparticle could be a promising treatment, especially in patients undergoing AML relapse after chemotherapy, in which leukemic cells overexpress CXCR4.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Nanopartículas , Animais , Antineoplásicos/uso terapêutico , Toxina Diftérica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Receptores CXCR4/genética , Transdução de Sinais
16.
Int J Nanomedicine ; 16: 1869-1888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716502

RESUMO

BACKGROUND AND PURPOSE: Around 40-50% of diffuse large-B cell lymphoma (DLBCL) patients suffer from refractory disease or relapse after R-CHOP first-line treatment. Many ongoing clinical trials for DLBCL patients involve microtubule targeting agents (MTAs), however, their anticancer activity is limited by severe side effects. Therefore, we chose to improve the therapeutic window of the MTA monomethyl auristatin E developing a nanoconjugate, T22-AUR, that selectively targets the CXCR4 receptor, which is overexpressed in many DLBCL cells (CXCR4+) and associated with poor prognosis. METHODS: The T22-AUR specificity towards CXCR4 receptor was performed by flow cytometry in different DLBCL cell lines and running biodistribution assays in a subcutaneous mouse model bearing CXCR4+ DLBCL cells. Moreover, we determined T22-AUR cytotoxicity using cell viability assays, cell cycle analysis, DAPI staining and immunohistochemistry. Finally, the T22-AUR antineoplastic effect was evaluated in vivo in an extranodal CXCR4+ DLBCL mouse model whereas the toxicity analysis was assessed by histopathology in non-infiltrated mouse organs and by in vitro cytotoxic assays in human PBMCs. RESULTS: We demonstrate that the T22-AUR nanoconjugate displays CXCR4-dependent targeting and internalization in CXCR4+ DLBCL cells in vitro as well as in a subcutaneous DLBCL mouse model. Moreover, it shows high cytotoxic effect in CXCR4+ DLBCL cells, including induction of G2/M mitotic arrest, DNA damage, mitotic catastrophe and apoptosis. Furthermore, the nanoconjugate shows a potent reduction in lymphoma mouse dissemination without histopathological alterations in non-DLBCL infiltrated organs. Importantly, T22-AUR also exhibits lack of toxicity in human PBMCs. CONCLUSION: T22-AUR exerts in vitro and in vivo anticancer effect on CXCR4+ DLBCL cells without off-target toxicity. Thus, T22-AUR promises to become an effective therapy for CXCR4+ DLBCL patients.


Assuntos
Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Nanoconjugados/uso terapêutico , Oligopeptídeos/uso terapêutico , Receptores CXCR4/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endocitose/efeitos dos fármacos , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/patologia , Linfoma Difuso de Grandes Células B/genética , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Oligopeptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/patologia , Distribuição Tecidual/efeitos dos fármacos
17.
Cancer Res ; 81(2): 438-451, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33229340

RESUMO

Tumors are complex tissues composed of transformed epithelial cells as well as cancer-activated fibroblasts (CAF) that facilitate epithelial tumor cell invasion. We show here that CAFs and other mesenchymal cells rely much more on glutamine than epithelial tumor cells; consequently, they are more sensitive to inhibition of glutaminase. Glutamine dependence drove CAF migration toward this amino acid when cultured in low glutamine conditions. CAFs also invaded a Matrigel matrix following a glutamine concentration gradient and enhanced the invasion of tumor cells when both cells were cocultured. Accordingly, glutamine directed invasion of xenografted tumors in immunocompromised mice. Stimulation of glutamine-driven epithelial tumor invasion by fibroblasts required previous CAF activation, which involved the TGFß/Snail1 signaling axis. CAFs moving toward Gln presented a polarized Akt2 distribution that was modulated by the Gln-dependent activity of TRAF6 and p62 in the migrating front, and depletion of these proteins prevented Akt2 polarization and Gln-driven CAF invasion. Our results demonstrate that glutamine deprivation promotes CAF migration and invasion, which in turn facilitates the movement of tumor epithelial cells toward nutrient-rich territories. These results provide a novel molecular mechanism for how metabolic stress enhances invasion and metastasis. SIGNIFICANCE: Cancer-associated fibroblasts migrate and invade toward free glutamine and facilitate invasion of tumor epithelial cells, accounting for their movement away from the hostile conditions of the tumor towards nutrient-rich adjacent tissues. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/2/438/F1.large.jpg.


Assuntos
Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Movimento Celular , Transição Epitelial-Mesenquimal , Glutamina/farmacologia , Neoplasias Epiteliais e Glandulares/patologia , Animais , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Acta Biomater ; 113: 584-596, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603867

RESUMO

A functional 29 amino acid-segment of the helix α5 from the human BAX protein has been engineered for production in recombinant bacteria as self-assembling, GFP-containing fluorescent nanoparticles, which are targeted to the tumoral marker CXCR4. These nanoparticles, of around 34 nm in diameter, show a moderate tumor biodistribution and limited antitumoral effect when systemically administered to mouse models of human CXCR4+ colorectal cancer (at 300 µg dose). However, if such BAX nanoparticles are co-administered in cocktail with equivalent nanoparticulate versions of BAK and PUMA proteins at the same total protein dose (300 µg), protein biodistribution and stability in tumor is largely improved, as determined by fluorescence profiles. This fact leads to a potent and faster destruction of tumor tissues when compared to individual pro-apoptotic factors. The analysis and interpretation of the boosted effect, from both the structural and functional sides, offers clues for the design of more efficient nanomedicines and theragnostic agents in oncology based on precise cocktails of human proteins. STATEMENT OF SIGNIFICANCE: Several human pro-apoptotic peptides (namely BAK, BAX and PUMA) have been engineered as self-assembling protein nanoparticles targeted to the tumoral marker CXCR4. The systemic administration of the same final amounts of those materials as single drugs, or as combinations of two or three of them, shows disparate intensities of antitumoral effects in a mouse model of human colorectal cancer, which are boosted in the triple combination on a non-additive basis. The superiority of the combined administration of pro-apoptotic agents, acting at different levels of the apoptotic cascade, opens a plethora of possibilities for the development of effective and selective cancer therapies based on the precise cocktailing of pro-apoptotic nanoparticulate agents.


Assuntos
Nanopartículas , Neoplasias , Apoptose , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Proteínas , Distribuição Tecidual
19.
Theranostics ; 10(12): 5169-5180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373205

RESUMO

Background: Novel therapeutic strategies are urgently needed to reduce relapse rates and enhance survival in Diffuse Large B-Cell Lymphoma (DLBCL) patients. CXCR4-overexpressing cancer cells are good targets for therapy because of their association with dissemination and relapse in R-CHOP treated DLBCL patients. Immunotoxins that incorporate bacterial toxins are potentially effective in treating haematological neoplasias, but show a narrow therapeutic index due to the induction of severe side effects. Therefore, when considering the delivery of these toxins as cancer therapeutics, there is a need not only to increase their uptake in the target cancer cells, and their stability in blood, but also to reduce their systemic toxicity. We have developed a therapeutic nanostructured protein T22-PE24-H6 that incorporates exotoxin A from Pseudomonas aeruginosa, which selectively targets lymphoma cells because of its specific interaction with a highly overexpressed CXCR4 receptor (CXCR4+) in DLBCL. Methods: T22-PE24-H6 cytotoxicity and its dependence on the CXCR4 receptor were evaluated in DLBCL cell lines using cell viability assays. Different in vitro experiments (mitochondrial membrane potential, Western Blot, Annexin V and DAPI staining) were conducted to determine T22-PE24-H6 cell death mechanisms. In vivo imaging and therapeutic effect studies were performed in a disseminated DLBCL mouse model that mimics organ infiltration in DLBCL patients. Finally, immunohistochemistry and histopathology analyses were used to evaluate the antineoplastic effect and systemic toxicity. Results: In vitro, T22-PE24-H6 induced selective cell death of CXCR4+ DLBCL cells by activating the apoptotic pathway. In addition, repeated T22-PE24-H6 intravenous administration in a CXCR4+ DLBCL-disseminated mouse model showed a significant reduction of lymphoma burden in organs clinically affected by DLBCL cells (lymph nodes and bone marrow). Finally, we did not observe systemic toxicity associated to the nanoparticle treatment in non-DLBCL-infiltrated organs. Conclusion: We have demonstrated here a potent T22-PE24-H6 antineoplastic effect, especially in blocking dissemination in a CXCR4+ DLBCL model without associated toxicity. Thereby, T22-PE24-H6 promises to become an effective alternative to treat CXCR4+ disseminated refractory or relapsed DLBCL patients.


Assuntos
Linfoma Difuso de Grandes Células B/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Humanos , Camundongos , Modelos Biológicos , Nanopartículas/química , Receptores CXCR4/metabolismo , Rituximab/farmacologia , Transdução de Sinais/fisiologia
20.
J Hematol Oncol ; 13(1): 36, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295630

RESUMO

BACKGROUND: Current acute myeloid leukemia (AML) therapy fails to eliminate quiescent leukemic blasts in the bone marrow, leading to about 50% of patient relapse by increasing AML burden in the bone marrow, blood, and extramedullar sites. We developed a protein-based nanoparticle conjugated to the potent antimitotic agent Auristatin E that selectively targets AML blasts because of their CXCR4 receptor overexpression (CXCR4+) as compared to normal cells. The therapeutic rationale is based on the involvement of CXCR4 overexpression in leukemic blast homing and quiescence in the bone marrow, and the association of these leukemic stem cells with minimal residual disease, dissemination, chemotherapy resistance, and lower patient survival. METHODS: Monomethyl Auristatin E (MMAE) was conjugated with the CXCR4 targeted protein nanoparticle T22-GFP-H6 produced in E. coli. Nanoconjugate internalization and in vitro cell viability assays were performed in CXCR4+ AML cell lines to analyze the specific antineoplastic activity through the CXCR4 receptor. In addition, a disseminated AML animal model was used to evaluate the anticancer effect of T22-GFP-H6-Auristatin in immunosuppressed NSG mice (n = 10/group). U of Mann-Whitney test was used to consider if differences were significant between groups. RESULTS: T22-GFP-H6-Auristatin was capable to internalize and exert antineoplastic effects through the CXCR4 receptor in THP-1 and SKM-1 CXCR4+ AML cell lines. In addition, repeated administration of the T22-GFP-H6-Auristatin nanoconjugate (9 doses daily) achieves a potent antineoplastic activity by internalizing specifically in the leukemic cells (luminescent THP-1) to selectively eliminate them. This leads to reduced involvement of leukemic cells in the bone marrow, peripheral blood, liver, and spleen, while avoiding toxicity in normal tissues in a luminescent disseminated AML mouse model. CONCLUSIONS: A novel nanoconjugate for targeted drug delivery of Auristatin reduces significantly the acute myeloid leukemic cell burden in the bone marrow and blood and blocks its dissemination to extramedullar organs in a CXCR4+ AML model. This selective drug delivery approach validates CXCR4+ AML cells as a target for clinical therapy, not only promising to improve the control of leukemic dissemination but also dramatically reducing the severe toxicity of classical AML therapy.


Assuntos
Aminobenzoatos/uso terapêutico , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Nanoconjugados/uso terapêutico , Oligopeptídeos/uso terapêutico , Receptores CXCR4/metabolismo , Aminobenzoatos/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Nanoconjugados/administração & dosagem , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Oligopeptídeos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA