Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 214: 115675, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406967

RESUMO

Acute promyelocytic leukemia (APL) is a hematological disease characterized by the expression of the oncogenic fusion protein PML-RARα. The current treatment approach for APL involves differentiation therapy using all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). However, the development of resistance to therapy, occurrence of differentiation syndrome, and relapses necessitate the exploration of new treatment options that induce differentiation of leukemic blasts with low toxicity. In this study, we investigated the cellular and molecular effects of MK-8776, a specific inhibitor of CHK1, in ATRA-resistant APL cells. Treatment of APL cells with MK-8776 resulted in a decrease in PML-RARα levels, increased expression of CD11b, and increased granulocytic activity consistent with differentiation. Interestingly, we showed that the MK-8776-induced differentiating effect resulted synergic with ATO. We found that the reduction of PML-RARα by MK-8776 was dependent on both proteasome and caspases. Specifically, both caspase-1 and caspase-3 were activated by CHK1 inhibition, with caspase-3 acting upstream of caspase-1. Activation of caspase-3 was necessary to activate caspase-1 and promote PML-RARα degradation. Transcriptomic analysis revealed significant modulation of pathways and upstream regulators involved in the inflammatory response and cell cycle control upon MK-8776 treatment. Overall, the ability of MK-8776 to induce PML-RARα degradation and stimulate differentiation of immature APL cancer cells into more mature forms recapitulates the concept of differentiation therapy. Considering the in vivo tolerability of MK-8776, it will be relevant to evaluate its potential clinical benefit in APL patients resistant to standard ATRA/ATO therapy, as well as in patients with other forms of acute leukemias.


Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Caspase 3 , Tretinoína/farmacologia , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Diferenciação Celular , Caspases
2.
Cell Death Differ ; 29(8): 1552-1568, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35034102

RESUMO

The circadian gene Timeless (TIM) provides a molecular bridge between circadian and cell cycle/DNA replication regulatory systems and has been recently involved in human cancer development and progression. However, its functional role in colorectal cancer (CRC), the third leading cause of cancer-related deaths worldwide, has not been fully clarified yet. Here, the analysis of two independent CRC patient cohorts (total 1159 samples) reveals that loss of TIM expression is an unfavorable prognostic factor significantly correlated with advanced tumor stage, metastatic spreading, and microsatellite stability status. Genome-wide expression profiling, in vitro and in vivo experiments, revealed that TIM knockdown induces the activation of the epithelial-to-mesenchymal transition (EMT) program. Accordingly, the analysis of a large set of human samples showed that TIM expression inversely correlated with a previously established gene signature of canonical EMT markers (EMT score), and its ectopic silencing promotes migration, invasion, and acquisition of stem-like phenotype in CRC cells. Mechanistically, we found that loss of TIM expression unleashes ZEB1 expression that in turn drives the EMT program and enhances the aggressive behavior of CRC cells. Besides, the deranged TIM-ZEB1 axis sets off the accumulation of DNA damage and delays DNA damage recovery. Furthermore, we show that the aggressive and genetically unstable 'CMS4 colorectal cancer molecular subtype' is characterized by a lower expression of TIM and that patients with the combination of low-TIM/high-ZEB1 expression have a poorer outcome. In conclusion, our results as a whole suggest the engagement of an unedited TIM-ZEB1 axis in key pathological processes driving malignant phenotype acquisition in colorectal carcinogenesis. Thus, TIM-ZEB1 expression profiling could provide a robust prognostic biomarker in CRC patients, supporting targeted therapeutic strategies with better treatment selection and patients' outcomes.


Assuntos
Proteínas de Ciclo Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
3.
Cancers (Basel) ; 13(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808099

RESUMO

17ß-estradiol (E2) regulates human physiology both in females and in males. At the same time, E2 acts as a genotoxic substance as it could induce DNA damages, causing the initiation of cellular transformation. Indeed, increased E2 plasma levels are a risk factor for the development of several types of cancers including breast cancer. This paradoxical identity of E2 undermines the foundations of the physiological definition of "hormone" as E2 works both as a homeostatic regulator of body functions and as a genotoxic compound. Here, (i) the molecular circuitries underlying this double face of E2 are reviewed, and (ii) a possible framework to reconcile the intrinsic discrepancies of the E2 function is reported. Indeed, E2 is a regulator of the DNA damage response, which this hormone exploits to calibrate its genotoxicity with its physiological effects. Accordingly, the genes required to maintain genome integrity belong to the E2-controlled cellular signaling network and are essential for the appearance of the E2-induced cellular effects. This concept requires an "upgrade" to the vision of E2 as a "genotoxic hormone", which balances physiological and detrimental pathways to guarantee human body homeostasis. Deregulation of this equilibrium between cellular pathways would determine the E2 pathological effects.

4.
Cells ; 9(11)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167477

RESUMO

Acute promyelocytic leukemia (APL) is a hematological disease characterized by a balanced reciprocal translocation that leads to the synthesis of the oncogenic fusion protein PML-RARα. APL is mainly managed by a differentiation therapy based on the administration of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). However, therapy resistance, differentiation syndrome, and relapses require the development of new low-toxicity therapies based on the induction of blasts differentiation. In keeping with this, we reasoned that a better understanding of the molecular mechanisms pivotal for ATRA-driven differentiation could definitely bolster the identification of new therapeutic strategies in APL patients. We thus performed an in-depth high-throughput transcriptional profile analysis and metabolic characterization of a well-established APL experimental model based on NB4 cells that represent an unevaluable tool to dissect the complex mechanism associated with ATRA-induced granulocytic differentiation. Pathway-reconstruction analysis using genome-wide transcriptional data has allowed us to identify the activation/inhibition of several cancer signaling pathways (e.g., inflammation, immune cell response, DNA repair, and cell proliferation) and master regulators (e.g., transcription factors, epigenetic regulators, and ligand-dependent nuclear receptors). Furthermore, we provide evidence of the regulation of a considerable set of metabolic genes involved in cancer metabolic reprogramming. Consistently, we found that ATRA treatment of NB4 cells drives the activation of aerobic glycolysis pathway and the reduction of OXPHOS-dependent ATP production. Overall, this study represents an important resource in understanding the molecular "portfolio" pivotal for APL differentiation, which can be explored for developing new therapeutic strategies.


Assuntos
Diferenciação Celular/genética , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Transcrição Gênica , Tretinoína/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Estudos de Coortes , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Leucemia Promielocítica Aguda/patologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
5.
Cell Death Dis ; 10(12): 951, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836699

RESUMO

Heterochromatin Protein 1 (HP1) and the Mre11-Rad50-Nbs1 (MRN) complex are conserved factors that play crucial role in genome stability and integrity. Despite their involvement in overlapping cellular functions, ranging from chromatin organization, telomere maintenance to DNA replication and repair, a tight functional relationship between HP1 and the MRN complex has never been elucidated. Here we show that the Drosophila HP1a protein binds to the MRN complex through its chromoshadow domain (CSD). In addition, loss of any of the MRN members reduces HP1a levels indicating that the MRN complex acts as regulator of HP1a stability. Moreover, overexpression of HP1a in nbs (but not in rad50 or mre11) mutant cells drastically reduces DNA damage associated with the loss of Nbs suggesting that HP1a and Nbs work in concert to maintain chromosome integrity in flies. We have also found that human HP1α and NBS1 interact with each other and that, similarly to Drosophila, siRNA-mediated inhibition of NBS1 reduces HP1α levels in human cultured cells. Surprisingly, fibroblasts from Nijmegen Breakage Syndrome (NBS) patients, carrying the 657del5 hypomorphic mutation in NBS1 and expressing the p26 and p70 NBS1 fragments, accumulate HP1α indicating that, differently from NBS1 knockout cells, the presence of truncated NBS1 extends HP1α turnover and/or promotes its stability. Remarkably, an siRNA-mediated reduction of HP1α in NBS fibroblasts decreases the hypersensitivity to irradiation, a characteristic of the NBS syndrome. Overall, our data provide an unanticipated evidence of a close interaction between HP1 and NBS1 that is essential for genome stability and point up HP1α as a potential target to counteract chromosome instability in NBS patient cells.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Instabilidade Genômica/genética , Proteínas Nucleares/genética , Animais , Homólogo 5 da Proteína Cromobox , Dano ao DNA/genética , Drosophila melanogaster/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Genoma de Inseto/genética , Humanos , Masculino , Mutação/genética , Síndrome de Quebra de Nijmegen/genética , Síndrome de Quebra de Nijmegen/patologia
6.
IUBMB Life ; 70(11): 1057-1066, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30296357

RESUMO

Acute myeloid leukemia (AML) is a genetically heterogeneous malignancy characterized by the expansion of hematopoietic stem/progenitor cells (HPCs) blocked at different stages of maturation/differentiation. The poor outcome of AMLs necessitates therapeutic improvement. In AML, genes encoding for myeloid transcription factors, signaling receptors regulating cell proliferation, and epigenetic modifiers can be mutated by somatically acquired genetic mutations or altered by chromosomal translocations. These mutations modify chromatin organization at genes sites regulating HPCs proliferation, terminal differentiation, and DNA repair, contributing to the development and progression of the disease. The reversibility of the epigenetic modifications by drug treatment makes epigenetic changes attractive targets for AML therapeutic intervention. Recent findings underline increased DNA damage and abnormalities in the DNA damage response (DDR) as a critical feature of AML blasts. The DDR preserves cell integrity and must be tightly coordinated with DNA methylation and chromatin remodeling to ensure the accessibility to the DNA of transcription factors and repair enzymes. A crucial role in these events is played by the ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR) kinases, which are hyperactive in AML. Based on these findings, we hypothesize the inhibition of DNA damage kinases as an alternative or complementary strategy for the differentiation treatment of AML as it leads to a reduced ability to repair the DNA damage, and to the inhibition of specific epigenetic modifiers whose function is altered in leukemic cells. © 2018 IUBMB Life, 70(11):1057-1066, 2018.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Diferenciação Celular , Dano ao DNA , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Reparo do DNA , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA