Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(1): 1-6, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38127444

RESUMO

Thermodynamic uncertainty relations (TURs) relate precision to the dissipation rate, yet the inequalities can be far from saturation. Indeed, in catenane molecular motor simulations, we record precision far below the TUR limit. We further show that this inefficiency can be anticipated by four physical parameters: the thermodynamic driving force, fuel decomposition rate, coupling between fuel decomposition and motor motion, and rate of undriven motor motion. The physical insights might assist in designing molecular motors in the future.

2.
Proc Natl Acad Sci U S A ; 120(33): e2210500120, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549273

RESUMO

Simulations can help unravel the complicated ways in which molecular structure determines function. Here, we use molecular simulations to show how slight alterations of a molecular motor's structure can cause the motor's typical dynamical behavior to reverse directions. Inspired by autonomous synthetic catenane motors, we study the molecular dynamics of a minimal motor model, consisting of a shuttling ring that moves along a track containing interspersed binding sites and catalytic sites. The binding sites attract the shuttling ring while the catalytic sites speed up a reaction between molecular species, which can be thought of as fuel and waste. When that fuel and waste are held in nonequilibrium steady-state concentrations, the free energy from the reaction drives directed motion of the shuttling ring along the track. Using this model and nonequilibrium molecular dynamics, we show that the shuttling ring's direction can be reversed by simply adjusting the spacing between binding and catalytic sites on the track. We present a steric mechanism behind the current reversal, supported by kinetic measurements from the simulations. These results demonstrate how molecular simulation can guide future development of artificial molecular motors.

4.
Nat Commun ; 13(1): 2204, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459863

RESUMO

Most computer simulations of molecular dynamics take place under equilibrium conditions-in a closed, isolated system, or perhaps one held at constant temperature or pressure. Sometimes, extra tensions, shears, or temperature gradients are introduced to those simulations to probe one type of nonequilibrium response to external forces. Catalysts and molecular motors, however, function based on the nonequilibrium dynamics induced by a chemical reaction's thermodynamic driving force. In this scenario, simulations require chemostats capable of preserving the chemical concentrations of the nonequilibrium steady state. We develop such a dynamic scheme and use it to observe cycles of a particle-based classical model of a catenane-like molecular motor. Molecular motors are frequently modeled with detailed-balance-breaking Markov models, and we explicitly construct such a picture by coarse graining the microscopic dynamics of our simulations in order to extract rates. This work identifies inter-particle interactions that tune those rates to create a functional motor, thereby yielding a computational playground to investigate the interplay between directional bias, current generation, and coupling strength in molecular information ratchets.


Assuntos
Simulação de Dinâmica Molecular , Temperatura , Termodinâmica
5.
J Chem Phys ; 153(20): 204102, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33261473

RESUMO

Reaction rates are a complicated function of molecular interactions, which can be selected from vast chemical design spaces. Seeking the design that optimizes a rate is a particularly challenging problem since the rate calculation for any one design is itself a difficult computation. Toward this end, we demonstrate a strategy based on transition path sampling to generate an ensemble of designs and reactive trajectories with a preference for fast reaction rates. Each step of the Monte Carlo procedure requires a measure of how a design constrains molecular configurations, expressed via the reciprocal of the partition function for the design. Although the reciprocal of the partition function would be prohibitively expensive to compute, we apply Booth's method for generating unbiased estimates of a reciprocal of an integral to sample designs without bias. A generalization with multiple trajectories introduces a stronger preference for fast rates, pushing the sampled designs closer to the optimal design. We illustrate the methodology on two toy models of increasing complexity: escape of a single particle from a Lennard-Jones potential well of tunable depth and escape from a metastable tetrahedral cluster with tunable pair potentials.

6.
J Chem Theory Comput ; 15(4): 2195-2205, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30830768

RESUMO

In order to accelerate molecular dynamics simulations using polarizable force fields, we combine a new extended Lagrangian approach that eliminates the self-consistent field step (iEL/0-SCF) with a stochastic integration scheme that allows for a long time step using a multiple time scale algorithm (SIN(R)). We consider different algorithms for the combined scheme that places different components of the nonbonded forces into different time scales, as well as splitting individual nonbonded forces across time scales, to demonstrate that the combined method works well for bulk water as well as for a concentrated salt solution, aqueous peptide, and solvated protein. Depending on system and desired accuracy, the iEL/0-SCF and SIN(R) combination yields lower bound computational speed-ups of ∼6-8 relative to a molecular dynamics Verlet integration using a standard SCF solver implemented in the reference program TINKER 8.1. The combined approach embodies a significant advance for equilibrium simulations in the canonical ensemble of many-body potential energy surfaces for condensed phase systems with speed-ups that exceed what is possible by either method alone.

7.
J Chem Theory Comput ; 14(2): 499-511, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29316388

RESUMO

Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.

8.
J Chem Theory Comput ; 13(11): 5207-5216, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28965397

RESUMO

With polarization becoming an increasingly common feature in classical molecular simulation, it is important to develop methods that can efficiently and accurately evaluate the many-body polarization solution. In this work, we expand the theoretical framework of our inertial extended Langrangian, self-consistent field iteration-free method (iEL/0-SCF), introduced for point induced dipoles, to the polarization model of a Drude oscillator. When applied to the polarizable simple point charge model (PSPC) for water, our iEL/0-SCF method for Drude polarization is as stable as a well-converged SCF solution and more stable than traditional extended Lagrangian (EL) approaches or EL formulations based on two temperature ensembles where Drude particles are kept "colder" than the real degrees of freedom. We show that the iEL/0-SCF method eliminates the need for mass repartitioning from parent atoms onto Drude particles, obeys system conservation of linear and angular momentum, and permits the extension of the integration time step of a basic molecular dynamics simulation to 6.0 fs for PSPC water.

9.
J Chem Phys ; 146(12): 124115, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28388116

RESUMO

Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

10.
J Phys Chem Lett ; 8(8): 1714-1723, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28350167

RESUMO

We present a new solution for classical polarization that does not require any self-consistent field iterations, the aspect of classical polarization that makes it computationally expensive. The new method builds upon our iEL/SCF Lagrangian scheme that defines a set of auxiliary induced dipoles whose original purpose was to serve as a time-reversible initial guess to the SCF solution of the set of real induced dipoles. In the new iEL/0-SCF approach the auxiliary dipoles now drive the time evolution of the real induced dipoles such that they stay close to the Born-Oppenheimer surface in order to achieve a truly SCF-less method. We show that the iEL/0-SCF exhibits no loss of simulation accuracy when analyzed across bulk water, low to high concentration salt solutions, and small solutes to large proteins in water. In addition, iEL/0-SCF offers significant computational savings over more expensive SCF calculations based on traditional 1 fs time step integration using symplectic integrators and is as fast as reversible reference system propagator algorithms with an outer 2 fs time step.

11.
J Phys Chem B ; 120(37): 9811-32, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27513316

RESUMO

Advanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models and algorithmic improvements that can ameliorate their cost, underdeveloped interfaces and limited dissemination in computational code bases that are widely used in the computational chemistry community, and software implementations that have not kept pace with modern high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods onto GPU and CPU hardware platforms. We have now approached an era where multipole-based polarizable force fields can be routinely used to obtain computational results comparable to state-of-the-art density functional theory while reaching sampling statistics that are acceptable when compared to that obtained from simpler fixed partial charge force fields.


Assuntos
Algoritmos , Gráficos por Computador , Simulação de Dinâmica Molecular , Teoria Quântica , Software , Eletricidade Estática , Propriedades de Superfície
12.
J Chem Phys ; 143(17): 174104, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26547155

RESUMO

We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA