RESUMO
[This corrects the article DOI: 10.1016/j.ekir.2023.10.029.].
RESUMO
Early detection is a key strategy to prevent kidney disease, its progression and related complications, but numerous studies show that awareness of kidney disease at the population level is low. Therefore, increasing knowledge and implementing sustainable solutions for early detection of kidney disease are public health priorities. Economic and epidemiological data underscore why kidney disease should be placed on the global public health agenda - kidney disease prevalence is increasing globally and it is now the seventh leading risk factor for mortality worldwide. Moreover, demographic trends, the obesity epidemic and the sequelae of climate change are all likely to increase kidney disease prevalence further, with serious implications for survival, quality of life and health care spending worldwide. Importantly, the burden of kidney disease is highest among historically disadvantaged populations that often have limited access to optimal kidney disease therapies, which greatly contributes to current socioeconomic disparities in health outcomes. This joint statement from the International Society of Nephrology, European Renal Association and American Society of Nephrology, supported by three other regional nephrology societies, advocates for the inclusion of kidney disease in the current WHO statement on major non-communicable disease drivers of premature mortality.
Assuntos
Saúde Global , Saúde Pública , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/terapia , Consenso , Fatores de RiscoRESUMO
Introduction: Accurate tools to inform individual prognosis in patients with autosomal dominant polycystic kidney disease (ADPKD) are lacking. Here, we report an artificial intelligence (AI)-generated method for routinely measuring total kidney volume (TKV). Methods: An ensemble U-net algorithm was created using the nnUNet approach. The training and internal cross-validation cohort consisted of all 1.5T magnetic resonance imaging (MRI) data acquired using 5 different MRI scanners (454 kidneys, 227 scans) in the CYSTic consortium, which was first manually segmented by a single human operator. As an independent validation cohort, we utilized 48 sequential clinical MRI scans with reference results of manual segmentation acquired by 6 individual analysts at a single center. The tool was then implemented for clinical use and its performance analyzed. Results: The training or internal validation cohort was younger (mean age 44.0 vs. 51.5 years) and the female-to-male ratio higher (1.2 vs. 0.94) compared to the clinical validation cohort. The majority of CYSTic patients had PKD1 mutations (79%) and typical disease (Mayo Imaging class 1, 86%). The median DICE score on the clinical validation data set between the algorithm and human analysts was 0.96 for left and right kidneys with a median TKV error of -1.8%. The time taken to manually segment kidneys in the CYSTic data set was 56 (±28) minutes, whereas manual corrections of the algorithm output took 8.5 (±9.2) minutes per scan. Conclusion: Our AI-based algorithm demonstrates performance comparable to manual segmentation. Its rapidity and precision in real-world clinical cases demonstrate its suitability for clinical application.
RESUMO
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic renal disease progressing to end-stage renal disease. There is a pressing need for the identification of early ADPKD biomarkers to enable timely intervention and the development of effective therapeutic approaches. Here, we profiled human urinary extracellular vesicles small RNAs by small RNA sequencing in patients with ADPKD and compared their differential expression considering healthy control individuals to identify dysregulated small RNAs and analyze downstream interaction to gain insight about molecular pathophysiology. METHODS: This is a cross-sectional study where urine samples were collected from a total of 23 PKD1-ADPKD patients and 28 healthy individuals. Urinary extracellular vesicles were purified, and small RNA was isolated and sequenced. Differentially expressed Small RNA were identified and functional enrichment analysis of the critical miRNAs was performed to identify driver genes and affected pathways. RESULTS: miR-320b, miR-320c, miR-146a-5p, miR-199b-3p, miR-671-5p, miR-1246, miR-8485, miR-3656, has_piR_020497, has_piR_020496 and has_piR_016271 were significantly upregulated in ADPKD patient urine extracellular vesicles and miRNA-29c was significantly downregulated. Five 'driver' target genes (FBRS, EDC3, FMNL3, CTNNBIP1 and KMT2A) were identified. CONCLUSIONS: The findings of the present study make significant contributions to the understanding of ADPKD pathogenesis and to the identification of novel biomarkers and potential drug targets aimed at slowing disease progression in ADPKD.
Assuntos
Vesículas Extracelulares , MicroRNAs , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Estudos Transversais , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , ForminasRESUMO
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) leads to progressive renal cyst formation and loss of kidney function in most patients. Vasopressin 2 receptor antagonists (V2RA) like tolvaptan are currently the only available renoprotective agents for rapidly progressive ADPKD. However, aquaretic side effects substantially limit their tolerability and therapeutic potential. In a preliminary clinical study, the addition of hydrochlorothiazide (HCT) to tolvaptan decreased 24-h urinary volume and appeared to increase renoprotective efficacy. The HYDRO-PROTECT study will investigate the long-term effect of co-treatment with HCT on tolvaptan efficacy (rate of kidney function decline) and tolerability (aquaresis and quality of life) in patients with ADPKD. METHODS: The HYDRO-PROTECT study is an investigator-initiated, multicenter, double-blind, placebo-controlled, randomized clinical trial. The study is powered to enroll 300 rapidly progressive patients with ADPKD aged ≥ 18 years, with an eGFR of > 25 mL/min/1.73 m2, and on stable treatment with the highest tolerated dose of tolvaptan in routine clinical care. Patients will be randomly assigned (1:1) to daily oral HCT 25 mg or matching placebo treatment for 156 weeks, in addition to standard care. OUTCOMES: The primary study outcome is the rate of kidney function decline (expressed as eGFR slope, in mL/min/1.73 m2 per year) in HCT versus placebo-treated patients, calculated by linear mixed model analysis using all available creatinine values from week 12 until the end of treatment. Secondary outcomes include changes in quality-of-life questionnaire scores (TIPS, ADPKD-UIS, EQ-5D-5L, SF-12) and changes in 24-h urine volume. CONCLUSION: The HYDRO-PROTECT study will demonstrate whether co-treatment with HCT can improve the renoprotective efficacy and tolerability of tolvaptan in patients with ADPKD.
Assuntos
Rim Policístico Autossômico Dominante , Humanos , Tolvaptan/efeitos adversos , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/tratamento farmacológico , Hidroclorotiazida/efeitos adversos , Qualidade de Vida , Taxa de Filtração Glomerular , Antagonistas dos Receptores de Hormônios Antidiuréticos/efeitos adversos , Rim , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como AssuntoRESUMO
INTRODUCTION: Our main objective was to identify baseline prognostic factors predictive of rapid disease progression in a large unselected clinical autosomal dominant polycystic kidney disease (ADPKD) cohort. METHODS: A cross-sectional analysis was performed in 618 consecutive ADPKD patients assessed and followed-up for over a decade. A total of 123 patients (19.9%) had reached kidney failure by the study date. Data were available for the following: baseline eGFR (n = 501), genotype (n = 549), baseline ultrasound mean kidney length (MKL, n = 424) and height-adjusted baseline MKL (HtMKL, n = 377). Rapid disease progression was defined as an annualized eGFR decline (∆eGFR) of >2.5 mL/min/year by linear regression over 5 years (n = 158). Patients were further divided into slow, rapid and very rapid ∆eGFR classes for analysis. Genotyped patients were classified into several categories: PKD1 (T, truncating; or NT, non-truncating), PKD2, other genes (non-PKD1 or -PKD2), no mutation detected or variants of uncertain significance. RESULTS: A PKD1-T genotype had the strongest influence on the probability of reduced baseline kidney function by age. A multivariate logistic regression model identified PKD1-T genotype and HtMKL (>9.5 cm/m) as independent predictors for rapid disease progression. The combination of both factors increased the positive predictive value for rapid disease progression over age 40 years and of reaching kidney failure by age 60 years to 100%. Exploratory analysis in a subgroup with available total kidney volumes showed higher positive predictive value (100% vs 80%) and negative predictive value (42% vs 33%) in predicting rapid disease progression compared with the Mayo Imaging Classification (1C-E). CONCLUSION: Real-world longitudinal data confirm the importance of genotype and kidney length as independent variables determining ∆eGFR. Individuals with the highest risk of rapid disease progression can be positively selected for treatment based on this combination.
Assuntos
Progressão da Doença , Genótipo , Taxa de Filtração Glomerular , Rim , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Humanos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Masculino , Feminino , Estudos Transversais , Adulto , Pessoa de Meia-Idade , Rim/patologia , Rim/diagnóstico por imagem , Prognóstico , Seguimentos , Canais de Cátion TRPP/genética , Estatura/genéticaRESUMO
INTRODUCTION: Liver transplantation is the only curative option for patients with polycystic liver disease (PLD). In the United Kingdom, these patients are listed on the variant syndrome list due to their preserved liver function reflected in the United Kingdom End-stage Liver Disease (UKELD) score. The transplantation and survival rates for this patient group in the UK have not been previously reported. METHODS: A retrospective cross-sectional analysis of patients receiving liver transplantation between 2010 and 2017 was performed using the NHS blood and transplantation database. This database contains the demographic, clinical parameters, indication for transplantation and follow-up of all patients in UK-based transplant centres. Basic statistics was performed using SPSS version 27. RESULTS: 5412 recipients received elective liver allografts in the study period. 1.6% (100) of recipients had PLD as their primary indication for transplantation with 60 receiving liver only allografts and 40 receiving combined liver-kidney allografts. PLD patients had a >3-fold longer mean waiting time for transplantation compared to non-PLD patients, 508 days v 154 days respectively. PLD patients receiving combined liver-kidney allografts had a longer waiting time than those receiving a liver only allograft, 610 days v 438 days respectively. There were comparable patient survival rates for people with PLD and non-PLD primary indications at 30 days (94.0% vs 97.6%) and 1 year (92.0% vs 93.2%) but improved survival rates at 5 years (81.3% vs 76.5%). There were also comparable allograft survival rates for people with PLD and non-PLD primary indications at 30 days (93.9% vs 95.3%) and 1 year (91.9% vs 91.2%) but improved survival rates at 5 years (82.5% vs 77.3%). Transplant centre-level analysis identified variation in the proportion of liver transplantations for people with PLD as their primary listed indication. CONCLUSIONS: Patients with PLD wait significantly longer for liver transplantation compared to other indications. However, transplanted PLD patients demonstrate better longer-term patient and liver allograft survival rates compared to transplanted non-PLD patients. The unexpected variation between individual UK centres transplanting for PLD deserves further study.
Assuntos
Hepatopatias , Transplante de Fígado , Humanos , Estudos Transversais , Estudos Retrospectivos , Listas de Espera , Hepatopatias/cirurgiaRESUMO
Background: Nephronophthisis (NPH) is the most common genetic cause of end-stage renal disease (ESRD) in childhood, and NPHP1 is the major pathogenic gene. Cyst formation at the corticomedullary junction is a pathological feature of NPH, but the mechanism underlying cystogenesis is not well understood. The isolation and identification of cystic cell subpopulation could help to identify their origins and provide vital clues to the mechanisms underlying cystogenesis in NPH. Methods: Single-nucleus RNA sequencing (snRNA-seq) was performed to produce an atlas of NPHP1 renal cells. Kidney samples were collected from WT (Nphp1 +/+) mice and NPHP1 (Nphp1 del2-20/del2-20) model mice. Results: A comprehensive atlas of the renal cellular landscape in NPHP1 was generated, consisting of 14 basic renal cell types as well as a subpopulation of DCT cells that was overrepresented in NPHP1 kidneys compared to WT kidneys. GO analysis revealed significant downregulation of genes associated with tubular development and kidney morphogenesis in this subpopulation. Furthermore, the reconstruction of differentiation trajectories of individual cells within this subpopulation confirmed that a specific group of cells in NPHP1 mice become arrested at an early stage of differentiation and proliferate to form cysts. We demonstrate that Niban1 is a specific molecular marker of cystic cells in both mice and human NPHP1. Conclusion: In summary, we report a novel subpopulation of DCT cells, marked by Niban1, that are classified as cystic cells in the NPHP1 mice kidney. These results offer fresh insights into the cellular and molecular basis of cystogenesis in NPH.
RESUMO
ADPKD is the most common hereditary kidney disease and a major cause of kidney failure world-wide. Significant kidney enlargement occurs decades preceding loss of kidney function. However, the earliest clinical manifestations of disease have been less well characterized in young adults, a typically healthy population who do not often seek routine medical care. In this study, Martinez and colleagues report a high prevalence of hypertension among young adults (18-30 years) enrolled in the Spanish ADPKD registry REPQRAD. Their findings confirm previous studies in children and young adults with ADPKD and make a strong case for earlier screening and intervention within this age group.
RESUMO
BACKGROUND: Rare diseases present a challenge to guideline implementation due to a low prevalence in the general population and the unfamiliarity of healthcare professionals. Existing literature in more common diseases references barriers and facilitators to guideline implementation. This systematic review aims to identify these barriers and facilitators in rare diseases from existing literature. METHODS: A multi-stage strategy included searching MEDLINE PubMed, EMBASE Ovid, Web of Science and Cochrane library from the earliest date available to April 2021, Orphanet journal hand-search, a pearl-growing strategy from a primary source and reference/citation search was performed. The Integrated Checklist of Determinants of Practice which comprises of twelve checklists and taxonomies, informed by 57 potential determinants was selected as a screening tool to identify determinants that warrant further in-depth investigation to inform design of future implementation strategies. RESULTS: Forty-four studies were included, most of which were conducted in the United States (54.5%). There were 168 barriers across 36 determinants (37 studies) and 52 facilitators across 22 determinants (22 studies). Fifteen diseases were included across eight WHO ICD-11 disease categories. Together individual health professional factors and guideline factors formed the majority of the reported determinants (59.5% of barriers and 53.8% of facilitators). Overall, the three most reported individual barriers were the awareness/familiarity with the recommendation, domain knowledge and feasibility. The three most reported individual facilitators were awareness/familiarity with the recommendation, agreement with the recommendation and ability to readily access the guidelines. Resource barriers to implementation included technology costs, ancillary staff costs and more cost-effective alternatives. There was a paucity of studies reporting influential people, patient advocacy groups or opinion leaders, or organisational factors influencing implementation. CONCLUSIONS: Key barriers and facilitators to the implementation of clinical practice guidelines in the setting of rare diseases were at the individual health professional and guideline level. Influential people and organisational factors were relatively under-reported and warrant exploration, as does increasing the ability to access the guidelines as a potential intervention.
Assuntos
Pessoal de Saúde , Doenças Raras , HumanosRESUMO
Introduction: The course of autosomal dominant polycystic kidney disease (ADPKD) varies greatly among affected individuals, necessitating natural history studies to characterize the determinants and effects of disease progression. Therefore, we conducted an observational, longitudinal study (OVERTURE; NCT01430494) of patients with ADPKD. Methods: This prospective study enrolled a large international population (N = 3409) encompassing a broad spectrum of ages (12-78 years), chronic kidney disease (CKD) stages (G1-G5), and Mayo imaging classifications (1A-1E). Outcomes included kidney function, complications, quality of life, health care resource utilization, and work productivity. Results: Most subjects (84.4%) completed ≥12 months of follow-up. Consistent with earlier findings, each additional l/m of height-adjusted total kidney volume (htTKV) on magnetic resonance imaging (MRI) was associated with worse outcomes, including lower estimated glomerular filtration rate (eGFR) (regression coefficient 17.02, 95% confidence interval [CI] 15.94-18.11) and greater likelihood of hypertension (odds ratio [OR] 1.25, 95% CI 1.17-1.34), kidney pain (OR 1.22, 95% CI 1.11-1.33), and hematuria (OR 1.35, 95% CI 1.21-1.51). Greater baseline htTKV was also associated with worse patient-reported health-related quality of life (e.g., ADPKD Impact Scale physical score, regression coefficient 1.02, 95% CI 0.65-1.39), decreased work productivity (e.g., work days missed, regression coefficient 0.55, 95% CI 0.18-0.92), and increased health care resource utilization (e.g., hospitalizations, OR 1.48, 95% CI 1.33-1.64) during follow-up. Conclusion: Although limited by a maximum 3-year duration of follow-up, this observational study characterized the burden of ADPKD in a broad population and indicated the predictive value of kidney volume for outcomes other than kidney function.
RESUMO
BACKGROUND: The epidermal growth factor receptor (EGFR) pathway is involved in kidney tissue repair and growth. Preclinical interventional data and scarce human data have suggested a role for this pathway in the pathophysiology of autosomal dominant polycystic kidney disease (ADPKD), while other data have suggested that its activation is causally linked to repair of damaged kidney tissue. We hypothesize that urinary EGFR ligands, as a reflection of EGFR activity, are associated with kidney function decline in ADPKD in the context of tissue repair following injury, and as the disease progresses as a sign of insufficient repair. METHODS: In the present study, we measured the EGFR ligands, EGF and heparin binding-EGF (HB-EGF), in 24-h urine samples of 301 ADPKD patients and 72 age- and sex-matched living kidney donors to dissect the role of the EGFR pathway in ADPKD. During a median follow-up of 2.5 years, the association of urinary EGFR ligand excretion with annual change in estimated glomerular filtration rate (eGFR) and height-adjusted total kidney volume in ADPKD patients was analyzed using mixed-models methods, and the expression of three closely related EGFR family receptors in ADPKD kidney tissue was investigated by immunohistochemistry. Additionally, the effect of reducing renal mass (after kidney donation), was assessed to investigate whether urinary EGF matches this reduction and thus reflects the amount of remaining healthy kidney tissue. RESULTS: At baseline, urinary HB-EGF did not differ between ADPKD patients and healthy controls (P = .6), whereas a lower urinary EGF excretion was observed in ADPKD patients [18.6 (11.8-27.8)] compared with healthy controls [51.0 (34.9-65.4) µg/24 h, P < .001]. Urinary EGF was positively associated with baseline eGFR (R = 0.54, P < .001) and a lower EGF was strongly associated with a more rapid GFR decline, even when adjusted for ADPKD severity markers (ß = 1.96, P < .001), whereas HB-EGF was not. Expression of the EGFR, but not other EGFR-related receptors, was observed in renal cysts but was absent in non-ADPKD kidney tissue. Finally, unilateral nephrectomy resulted in a decrease of 46.4 (-63.3 to -17.6) % in urinary EGF excretion, alongside a decrease of 35.2 ± 7.2% in eGFR and 36.8 ± 6.9% in measured GFR (mGFR), whereas maximal mGFR (measured after dopamine induced hyperperfusion) decreased by 46.1 ± 7.8% (all P < .001). CONCLUSIONS: Our data suggest that lower urinary EGF excretion may be a valuable novel predictor for kidney function decline in patients with ADPKD.
Assuntos
Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/complicações , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Fator de Crescimento Epidérmico , Progressão da Doença , Rim , Taxa de Filtração Glomerular , Gravidade do PacienteRESUMO
Background: Tolvaptan, a vasopressin V2 receptor antagonist, was approved in 2015 by the UK National Institute for Health and Care Excellence for use in patients with autosomal dominant polycystic kidney disease (ADPKD) and rapid disease progression. Simultaneous guidance was issued by the UK Kidney Association (UKKA) to facilitate national implementation. Methods: Data on tolvaptan prescribing in England was obtained through the National Health Service (NHS) Digital, a national survey of all 77 adult kidney units, and the implementation of UKKA guidance was evaluated at an expert PKD centre. Results: A regional variation of up to 4-fold for tolvaptan prescribing in England was found. Despite most kidney units following UKKA guidance, centre-based estimates of eligible or treated patient numbers were highly variable. Retrospective evaluation at an expert PKD centre revealed that in a cohort demonstrating rapid estimated glomerular filtration rate (eGFR) decline, 14% would not be eligible for tolvaptan by Mayo imaging classification and more than half (57%) would not be eligible by Predicting Renal Outcome in Polycystic Kidney Disease score. The 3-year discontinuation rate was higher than expected (56%), the majority (70%) due to aquaretic symptoms. In patients taking tolvaptan for at least 2 years, 81% showed a reduction in the rate of eGFR decline compared with baseline, with earlier disease associated with positive treatment response. Conclusion: Real-world data have revealed a much higher regional variation in tolvaptan prescribing for ADPKD in England than expected. We propose further investigation into the factors responsible for this variation.
RESUMO
RATIONALE & OBJECTIVE: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of multiple kidney cysts that leads to growth in total kidney volume (TKV) and progression to kidney failure. Venglustat is a glucosylceramide synthase inhibitor that has been shown to inhibit cyst growth and reduce kidney failure in preclinical models of ADPKD. STUDY DESIGN: STAGED-PKD was a 2-stage, multicenter, double-blind, randomized, placebo-controlled phase 2/3 study in adults with ADPKD at risk of rapidly progressive disease, who were selected based on Mayo Clinic imaging classification of ADPKD class 1C, 1D, or 1E and an estimated glomerular filtration rate (eGFR) of 30-89.9mL/min/1.73m2. SETTING & PARTICIPANTS: Enrollment included 236 and 242 patients in stages 1 and 2, respectively. INTERVENTIONS: In trial stage 1, the patients were randomized 1:1:1 to venglustat, 8mg; venglustat, 15mg; or placebo. In stage 2, the patients were randomized 1:1 to venglustat, 15mg (highest dose identified as safe and well tolerated in stage 1), or placebo. OUTCOMES: Primary end points were rate of change in TKV over 18 months in stage 1 and eGFR slope over 24 months in stage 2. Secondary end points were eGFR slope over 18 months (stage 1), rate of change in TKV (stage 2), and safety/tolerability, pain, and fatigue (stages 1 and 2). RESULTS: A prespecified interim futility analysis showed that venglustat treatment had no effect on the annualized rate of change in TKV over 18 months (stage 1) and had a faster rate of decline in eGFR slope over 24 months (stage 2). Due to this lack of efficacy, the study was terminated early. LIMITATIONS: The short follow-up period after the end of treatment and limited generalizability of the findings. CONCLUSIONS: In patients with rapidly progressing ADPKD, treatment with venglustat at either 8mg or 15mg showed no change in the rate of change in TKV and a faster rate of eGFR decline in STAGED-PKD despite a dose-dependent decrease in plasma glucosylceramide levels. FUNDING: This study was funded by Sanofi. TRIAL REGISTRATION: Registered at ClinicalTrials.gov with study number NCT03523728.
Assuntos
Rim Policístico Autossômico Dominante , Insuficiência Renal , Adulto , Humanos , Rim Policístico Autossômico Dominante/complicações , Rim , Insuficiência Renal/complicações , Taxa de Filtração Glomerular , Progressão da DoençaRESUMO
BACKGROUND: Monogenic disorders are estimated to account for 10%-12% of patients with kidney failure. We report the unexpected finding of an unusual uromodulin (UMOD) variant in multiple pedigrees within the British population and demonstrate a shared haplotype indicative of an ancestral variant. METHODS: Probands from 12 apparently unrelated pedigrees with a family history of kidney failure within a geographically contiguous UK region were shown to be heterozygous for a pathogenic variant of UMOD c.278_289delTCTGCCCCGAAG insCCGCCTCCT. RESULTS: A total of 88 clinically affected individuals were identified, all born in the UK and of white British ethnicity. 20 other individuals with the variant were identified in the UK 100,000 Genomes (100K) Project and 9 from UK Biobank (UKBB). A common extended haplotype was present in 5 of the UKBB individuals who underwent genome sequencing which was only present in <1 in 5000 of UKBB controls. Significantly, rare variants (<1 in 250 general population) identified within 1 Mb of the UMOD variant by genome sequencing were detected in all of the 100K individuals, indicative of an extended shared haplotype. CONCLUSION: Our data confirm a likely founder UMOD variant with a wide geographical distribution within the UK. It should be suspected in cases of unexplained familial nephropathy presenting in patients of white British ancestry.
Assuntos
Nefropatias , Insuficiência Renal , Humanos , Uromodulina/genética , Nefropatias/genética , Sequência de Bases , Haplótipos/genética , Insuficiência Renal/genéticaRESUMO
In Drosophila blood, plasmatocytes of the haemocyte lineage represent the functional equivalent of vertebrate macrophages and have become an established in vivo model with which to study macrophage function and behaviour. However, the use of plasmatocytes as a macrophage model has been limited by a historical perspective that plasmatocytes represent a homogenous population of cells, in contrast to the high levels of heterogeneity of vertebrate macrophages. Recently, a number of groups have reported transcriptomic approaches which suggest the existence of plasmatocyte heterogeneity, while we identified enhancer elements that identify subpopulations of plasmatocytes which exhibit potentially pro-inflammatory behaviours, suggesting conservation of plasmatocyte heterogeneity in Drosophila. These plasmatocyte subpopulations exhibit enhanced responses to wounds and decreased rates of efferocytosis when compared to the overall plasmatocyte population. Interestingly, increasing the phagocytic requirement placed upon plasmatocytes is sufficient to decrease the size of these plasmatocyte subpopulations in the embryo. However, the mechanistic basis for this response was unclear. Here, we examine how plasmatocyte subpopulations are modulated by apoptotic cell clearance (efferocytosis) demands and associated signalling pathways. We show that loss of the phosphatidylserine receptor Simu prevents an increased phagocytic burden from modulating specific subpopulation cells, while blocking other apoptotic cell receptors revealed no such rescue. This suggests that Simu-dependent efferocytosis is specifically involved in determining fate of particular subpopulations. Supportive of our original finding, mutations in amo (the Drosophila homolog of PKD2), a calcium-permeable channel which operates downstream of Simu, phenocopy simu mutants. Furthermore, we show that Amo is involved in the acidification of the apoptotic cell-containing phagosomes, suggesting that this reduction in pH may be associated with macrophage reprogramming. Additionally, our results also identify Ecdysone receptor signalling, a pathway related to control of cell death during developmental transitions, as a controller of plasmatocyte subpopulation identity. Overall, these results identify fundamental pathways involved in the specification of plasmatocyte subpopulations and so further validate Drosophila plasmatocytes as a heterogeneous population of macrophage-like cells within this important developmental and immune model.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/genética , Eferocitose , Macrófagos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismoRESUMO
Rationale & Objective: Venglustat, a glucosylceramide synthase inhibitor, inhibits cyst growth and reduces kidney failure in mouse models of autosomal dominant polycystic kidney disease (ADPKD). STAGED-PKD aims to determine the safety and efficacy of venglustat and was designed using patient enrichment for progression to end-stage kidney disease and modeling from prior ADPKD trials. Study Design: STAGED-PKD is a 2-stage, international, double-blind, randomized, placebo-controlled trial in adults with ADPKD (Mayo Class 1C-1E) and estimated glomerular filtration rate (eGFR) 45-<90 mL/min/1.73 m2 at risk of rapidly progressive disease. Enrichment for rapidly progressing patients was identified based on retrospective analysis of total kidney volume (TKV) and eGFR slope from the combined Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease and HALT Progression of Polycystic Kidney Disease A studies. Setting & Participants: Target enrollment in stages 1 and 2 was 240 and 320 patients, respectively. Interventions: Stage 1 randomizes patients 1:1:1 to venglustat 8 mg or 15 mg once daily or placebo. Stage 2 randomizes patients 1:1 to placebo or venglustat, with the preferred dose based on stage 1 safety data. Outcomes: Primary endpoints are TKV growth rate over 18 months in stage 1 and eGFR slope over 24 months in stage 2. Secondary endpoints include: annualized rate of change in eGFR from baseline to 18 months (stage 1); annualized rate of change in TKV based on magnetic resonance imaging from baseline to 18 months (stage 2); and safety, tolerability, pain, and fatigue (stages 1 and 2). Limitations: If stage 1 is unsuccessful, patients enrolled in the trial may develop drug-related adverse events that can have long-lasting effects. Conclusions: Modeling allows the design and powering of a 2-stage combined study to assess venglustat's impact on TKV growth and eGFR slope. Stage 1 TKV assessment via a nested approach allows early evaluation of efficacy and increased efficiency of the trial design by reducing patient numbers and trial duration. Funding: This study was funded by Sanofi. Trial registration: STAGED-PKD has been registered at ClinicalTrials.gov with study number NCT03523728.
RESUMO
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease leading to kidney failure. To date, there is no cure for the disease although there is one approved disease-modifying therapy: tolvaptan. In this context, a common question that ADPKD patients ask in clinical practice is whether there is anything they can do to slow their disease by modifying their diet or lifestyle. Recent evidence from experimental PKD models has shown the potential benefits of caloric restriction, high water intake and especially ketogenic diets in preserving kidney function. Whether these benefits are translatable to humans remains unknown. In this issue of CKJ, Strubl et al. report results of a self-enrolled survey of autosomal dominant polycystic kidney disease (ADPKD) patients who have self-administered a ketogenic diet [1]. These results provide interesting insights into the tolerability, potential benefits and harms of such an intervention that could inform a future clinical trial.
RESUMO
Background: Everolimus is a potential alternative to embolization and nephrectomy for managing tuberous sclerosis complex (TSC)-associated renal angiomyolipoma (AML). In 2016, National Health Service England approved its use through regional centres for renal AML ≥30 mm showing interval growth. Evidence of lesion stabilization or reduction after 6 months is mandated for continuation of long-term treatment. Methods: From November 2016 to June 2021, all potentially eligible adult TSC patients with AML across Yorkshire and Humber were referred for assessment and monitoring. Eligible patients underwent baseline renal magnetic resonance imaging (MRI) assessment and a follow-up MRI scan after 6 months on everolimus. Dose titration was guided by trough levels and lesion responsiveness using a new 3D MRI volumetric protocol. Results: Of 28 patients commencing treatment, 19 tolerated everolimus for >3 months. Overall, 11 patients (40%) discontinued treatment, mostly due to recurrent infections (42%) and allergic reactions (25%). Sixty-eight percent required dose adjustments from the initiating dose (10 mg) due to sub-optimal trough levels (38%), minimal AML response (15%) or adverse events (47%). 3D volumetric assessment confirmed a reduction in AML volume of a pre-selected index lesion in all treatment-naïve cases (n = 14), showing superiority over 2D measurements of lesion diameter. Conclusion: In this cohort, everolimus promoted AML regression in all patients who tolerated the drug for >6 months with stabilization observed over 3 years. Trough levels enabled individual dose titration to maximize responsiveness and minimize side effects. The use of 3D MRI assessment of lesion volume was superior to 2D measurements of lesion diameter in monitoring treatment response.
RESUMO
Approval of the vasopressin V2 receptor antagonist tolvaptan-based on the landmark TEMPO 3:4 trial-marked a transformation in the management of autosomal dominant polycystic kidney disease (ADPKD). This development has advanced patient care in ADPKD from general measures to prevent progression of chronic kidney disease to targeting disease-specific mechanisms. However, considering the long-term nature of this treatment, as well as potential side effects, evidence-based approaches to initiate treatment only in patients with rapidly progressing disease are crucial. In 2016, the position statement issued by the European Renal Association (ERA) was the first society-based recommendation on the use of tolvaptan and has served as a widely used decision-making tool for nephrologists. Since then, considerable practical experience regarding the use of tolvaptan in ADPKD has accumulated. More importantly, additional data from REPRISE, a second randomized clinical trial (RCT) examining the use of tolvaptan in later-stage disease, have added important evidence to the field, as have post hoc studies of these RCTs. To incorporate this new knowledge, we provide an updated algorithm to guide patient selection for treatment with tolvaptan and add practical advice for its use.