Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(2): 023906, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113453

RESUMO

Implanted positive muons with low energies (in the range 1-30 keV) are extremely useful local probes in the study of thin films and multi-layer structures. The average muon stopping depth, typically in the order of tens of nanometers, is a function of the muon implantation energy and of the density of the material, but the stopping range extends over a broad region, which is also in the order of tens of nanometers. Therefore, an adequate simulation procedure is required in order to extract the depth dependence of the experimental parameters. Here, we present a method to extract depth-resolved information from the implantation energy dependence of the experimental parameters in a low-energy muon spin spectroscopy experiment. The method and corresponding results are exemplified for a semiconductor film, Cu(In,Ga)Se2, covered with a thin layer of Al2O3, but can be applied to any heterostructure studied with low-energy muons. It is shown that if an effect is present in the experimental data, this method is an important tool to identify its location and depth extent.

2.
J Phys Condens Matter ; 30(42): 425503, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30207294

RESUMO

The formation and migration energies of interstitial hydrogen in rutile TiO2 are obtained from first principles calculations. The computational approach was based on density functional theory with a semilocal generalised-gradient approximation functional, supplemented with an on-site Hubbard term to account for correlation among the Ti 3d electrons. Charge-transition levels are calculated and compared to previous theoretical studies. The donor character of hydrogen is examined in depth, focusing in particular on the tendency to form polaron-like configurations with the unpaired electron trapped at nearby titanium ions. Distinct minimum-energy paths of hydrogen migration and associated energy barriers were determined by the nudged elastic-band method. The present findings show clearly the strong anisotropy in the energy barriers for migration within the open c channels as opposed to migration crossing adjacent channels of the rutile lattice. For the rate-limiting step which leads to macroscopic diffusion along the c axis the corresponding rate and diffusion coefficient were also determined from transition-state theory. The results are discussed in connection to existing measurements of hydrogen diffusion and recent findings from electron paramagnetic resonance, electron-nuclear double resonance and muonium spectroscopies that probed the spatial localization of the electron spin.

3.
Phys Rev Lett ; 86(12): 2601-4, 2001 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11289990

RESUMO

We confirm the recent prediction that interstitial protium may act as a shallow donor in zinc oxide, by direct spectroscopic observation of its muonium counterpart. On implantation into ZnO, positive muons--chemically analogous to protons in this context--form paramagnetic centers below about 40 K. The muon-electron contact hyperfine interaction, as well as the temperature and activation energy for ionization, imply a shallow level. Similar results for the cadmium chalcogenides suggest that such shallow donor states are generic to the II-VI compounds. The donor level depths should serve as a guide for the electrical activity of interstitial hydrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA