Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Chemistry ; : e202400322, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629212

RESUMO

This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.

2.
Chemistry ; 30(18): e202303539, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38230625

RESUMO

Fluorescent base analogues (FBAs) have become useful tools for applications in biophysical chemistry, chemical biology, live-cell imaging, and RNA therapeutics. Herein, two synthetic routes towards a novel FBA of uracil named qU (quadracyclic uracil/uridine) are described. The qU nucleobase bears a tetracyclic fused ring system and is designed to allow for specific Watson-Crick base pairing with adenine. We find that qU absorbs light in the visible region of the spectrum and emits brightly with a quantum yield of 27 % and a dual-band character in a wide pH range. With evidence, among other things, from fluorescence lifetime measurements we suggest that this dual emission feature results from an excited-state proton transfer (ESPT) process. Furthermore, we find that both absorption and emission of qU are highly sensitive to pH. The high brightness in combination with excitation in the visible and pH responsiveness makes qU an interesting native-like nucleic acid label in spectroscopy and microscopy applications in, for example, the field of mRNA and antisense oligonucleotide (ASO) therapeutics.


Assuntos
Corantes Fluorescentes , Ácidos Nucleicos , Uridina/química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Uracila
3.
Euro Surveill ; 29(2)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214080

RESUMO

BackgroundIn Sweden, information on seroprevalence of tick-borne encephalitis virus (TBEV) in the population, including vaccination coverage and infection, is scattered. This is largely due to the absence of a national tick-borne encephalitis (TBE) vaccination registry, scarcity of previous serological studies and use of serological methods not distinguishing between antibodies induced by vaccination and infection. Furthermore, the number of notified TBE cases in Sweden has continued to increase in recent years despite increased vaccination.AimThe aim was to estimate the TBEV seroprevalence in Sweden.MethodsIn 2018 and 2019, 2,700 serum samples from blood donors in nine Swedish regions were analysed using a serological method that can distinguish antibodies induced by vaccination from antibodies elicited by infection. The regions were chosen to reflect differences in notified TBE incidence.ResultsThe overall seroprevalence varied from 9.7% (95% confidence interval (CI): 6.6-13.6%) to 64.0% (95% CI: 58.3-69.4%) between regions. The proportion of vaccinated individuals ranged from 8.7% (95% CI: 5.8-12.6) to 57.0% (95% CI: 51.2-62.6) and of infected from 1.0% (95% CI: 0.2-3.0) to 7.0% (95% CI: 4.5-10.7). Thus, more than 160,000 and 1,600,000 individuals could have been infected by TBEV and vaccinated against TBE, respectively. The mean manifestation index was 3.1%.ConclusionA difference was observed between low- and high-incidence TBE regions, on the overall TBEV seroprevalence and when separated into vaccinated and infected individuals. The estimated incidence and manifestation index argue that a large proportion of TBEV infections are not diagnosed.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Infecções por Flavivirus , Humanos , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Suécia/epidemiologia , Cobertura Vacinal , Estudos Soroepidemiológicos , Vacinação , Anticorpos Antivirais
4.
J Am Chem Soc ; 145(40): 22168-22175, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37766514

RESUMO

Visible-to-ultraviolet (UV) triplet-triplet annihilation photochemical upconversion (TTA-UC) has gained a lot of attention recently due to its potential for driving demanding high-energy photoreactions using low-intensity visible light. The efficiency of this process has rapidly improved in the past few years, in part thanks to the recently discovered annihilator compound 1,4-bis((triisopropylsilyl)ethynyl)naphthalene (N-2TIPS). Despite its beneficial TTA-UC characteristics, the success of N-2TIPS in this context is not yet fully understood. In this work, we seek to elucidate what role the specific type and number of substituents in naphthalene annihilator compounds play to achieve the characteristics sought after for TTA-UC. We show that the type of substituent attached to the naphthalene core is crucial for its performance as an annihilator. More specifically, we argue that the choice of substituent dictates to what degree the sensitized triplets form excimer complexes with ground state annihilators of the same type, which is a process competing with that of TTA. The addition of more bulky substituents positively impacts the upconverting ability by impeding excimer formation on the triplet surface, an effect that is enhanced with the number of substituents. The presence of triplet excimers is confirmed from transient absorption measurements, and the excimer formation rate is quantified, showing several orders of magnitude differences between different derivatives. These insights will aid in the further development of annihilator compounds for solar energy applications for which the behavior at low incident powers is of particular significance.

5.
J Phys Chem Lett ; 14(35): 7897-7902, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37642563

RESUMO

We present an experimental study investigating the solvent-dependent dynamics of a 9,10-bis(phenylethynyl)anthracene monomer, dimer, and trimer. Using transient absorption spectroscopy, we have discovered that triplet excited state formation in the dimer and trimer molecules in polar solvents is a consequence of charge recombination subsequent to symmetry-breaking charge separation rather than singlet fission. Total internal reflection emission measurements of the monomer demonstrate that excimer formation serves as the primary decay pathway at a high concentration. In the case of highly concentrated solutions of the trimer, we observe evidence of triplet formation without the prior formation of a charge-separated state. We postulate that this is attributed to the formation of small aggregates, suggesting that oligomers mimicking the larger chromophore counts in crystals could potentially facilitate singlet fission. Our experimental study sheds light on the intricate dynamics of the 9,10-bis(phenylethynyl)anthracene system, elucidating the role of solvent- and concentration-dependent factors for triplet formation and charge separation.

6.
J Phys Chem A ; 127(28): 5841-5850, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37427990

RESUMO

The design of advanced optical materials based on triplet states requires knowledge of the triplet energies of the molecular building blocks. To this end, we report the triplet energy of cyanostar (CS) macrocycles, which are the key structure-directing units of small-molecule ionic isolation lattices (SMILES) that have emerged as programmable optical materials. Cyanostar is a cyclic pentamer of covalently linked cyanostilbene units that form π-stacked dimers when binding anions as 2:1 complexes. The triplet energies, ET, of the parent cyanostar and its 2:1 complex around PF6- are measured to be 1.96 and 2.02 eV, respectively, using phosphorescence quenching studies at room temperature. The similarity of these triplet energies suggests that anion complexation leaves the triplet energy relatively unchanged. Similar energies (2.0 and 1.98 eV, respectively) were also obtained from phosphorescence spectra of the iodinated form, I-CS, and of complexes formed with PF6- and IO4- recorded at 85 K in an organic glass. Thus, measures of the triplet energies likely reflect geometries close to those of the ground state either directly by triplet energy transfer to the ground state or indirectly by using frozen media to inhibit relaxation. Density functional theory (DFT) and time-dependent DFT were undertaken on a cyanostar analogue, CSH, to examine the triplet state. The triplet excitation localizes on a single olefin whether in the single cyanostar or its π-stacked dimer. Restriction of the geometrical changes by forming either a dimer of macrocycles, (CSH)2, or a complex, (CSH)2·PF6-, reduces the relaxation resulting in an adiabatic energy of the triplet state of 2.0 eV. This structural constraint is also expected for solid-state SMILES materials. The obtained T1 energy of 2.0 eV is a key guide line for the design of SMILES materials for the manipulation of triplet excitons by triplet state engineering in the future.

7.
Chemistry ; 29(13): e202203651, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524776

RESUMO

Green-to-blue triplet-triplet annihilation photon upconversion with the well-studied upconversion pair 9,10-diphenylanthracene (DPA)/platinum octaethylporphyrin (PtOEP) was used to reversibly drive the photoisomerization of diarylethene (DAE) photoswitches by using visible light. By carefully selecting the kinetic and spectral properties of the molecular system as well as the experimental geometry, a single green light source can be used to selectively trigger both the ring-opening and the ring-closing reactions, whilst also inducing fluorescence from the colored closed isomer that can be used as a readout to monitor the isomerization process in situ. The upconversion solution and the DAE solution are kept physically separated, allowing them to be characterized both concomitantly and individually without further separation processes. The ring-closing reaction using upconverted photons was quantified and compared to the efficiency of direct isomerization with ultraviolet light.

8.
J Mater Chem A Mater ; 10(40): 21279-21290, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36325268

RESUMO

Sustainable photonics applications of solid-state triplet-triplet annihilation photon upconversion (TTA-UC) are limited by a small UC spectral window, low UC efficiency in air, and non-recyclability of polymeric materials used. In a step to overcome these issues, we have developed new recyclable TTA-UC bioplastics by encapsulating TTA-UC chromophores liquid inside the semicrystalline gelatin films showing broad-spectrum upconversion (red/far-red to blue) with high UC efficiency in air. For this, we synthesized a new anionic annihilator, sodium-TIPS-anthracene-2-sulfonate (TIPS-AnS), that combined with red/far-red sensitizers (PdTPBP/Os(m-peptpy)2(TFSI)2), a liquid surfactant Triton X-100 reduced (TXr) and protein gelatin (G) formed red/far-red to blue TTA-UC bioplastic films just by air drying of their aqueous solutions. The G-TXr-TIPS-AnS-PdTPBP film showed record red to blue (633 to 478 nm) TTA-UC quantum yield of 8.5% in air. The high UC quantum yield has been obtained due to the fluidity of dispersed TXr containing chromophores and oxygen blockage by gelatin fibers that allowed efficient diffusion of triplet excited chromophores. Further, the G-TXr-TIPS-AnS-Os(m-peptpy)2(TFSI)2 bioplastic film displayed far-red to blue (700-730 nm to 478 nm) TTA-UC, demonstrating broad-spectrum photon harvesting. Finally, we demonstrated the recycling of G-TXr-TIPS-AnS-PdTPBP bioplastics by developing a downstream approach that gives new directions for designing future recyclable photonics bioplastic materials.

9.
Chem Sci ; 13(40): 11904-11911, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36320900

RESUMO

We report the first example of direct far-red triplet sensitized molecular photoswitching in a condensed phase wherein a liquid azobenzene derivative (Azo1) co-assembled within a liquid surfactant-protein film undergoes triplet sensitized Z-to-E photoswitching upon far-red/red light excitation in air. The role of triplet sensitization in photoswitching has been confirmed by quenching of sensitizer phosphorescence by Z-Azo1 and temperature-dependent photoswitching experiments. Herein, we demonstrate new biosustainable fabrication designs to address key challenges in solid-state photoswitching, effectively mitigating chromophore aggregation and requirement of high energy excitations by dispersing the photoswitch in the trapped liquid inside the solid framework and by shifting the action spectrum from blue-green light (450-560 nm) to the far-red/red light (740/640 nm) region.

10.
Ups J Med Sci ; 1272022.
Artigo em Inglês | MEDLINE | ID: mdl-36337280

RESUMO

Background: The hemodialysis (HD) population has been a vulnerable group during the coronavirus disease 2019 (COVID-19) pandemic. Advanced chronic kidney disease with uremia is associated with weaker immune response to infections and an attenuated response to vaccines. The aim of this study was to study the humoral and cellular response to the second and third doses of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS­CoV­2) BNT162b2 mRNA vaccine in HD patients and to follow the response over time. Methods: The patients received their first two vaccine doses from 28 December 2020 within a 4-week interval and the third dose in September 2021 and were followed-up for humoral and cellular immune response at 1) 7-15 weeks and 2) 6-8 months after dose two (no t-cell reactivity measured), and 3) 3 weeks and 4) 3 months after dose three. Fifty patients were initially enrolled, and 40 patients were followed during the entire study. Levels of COVID-19 (SARS-CoV-2) IgG antibody against the Spike antigen (anti-S) and T-cell reactivity testing against the Spike protein using Enzyme-Linked ImmunoSpot (ELISPOT) technology were evaluated. Results: IgG antibodies to anti-S were detected in 35 (88%) of the 40 patients 7-15 weeks after vaccine dose two, 31 (78%) were positive, and 4 (10%) borderline. The median anti-S titer was 606 Abbott Units/milliliter (AU/mL) (interquartile range [IQR] 134-1,712). Three months after the third dose, anti-S was detected in 38 (95%) of 40 patients (P < 0.01 compared to after dose two), and the median anti-S titer was 9,910 AU/mL (IQR 2,325-26,975). Cellular reactivity was detected in 22 (55%), 34 (85%), and 28 (71%) of the 40 patients, and the median T-cell response was 9.5 (IQR 3.5-80), 51.5 (14.8-132), and 19.5 (8.8-54.2) units, respectively, for 6-8 months after dose two, 3 weeks, and 3 months after dose three. Conclusions: Our data show that a third dose of SARS­CoV­2 BNT162b2 mRNA vaccine gives a robust and improved immunological response in HD patients, but a few patients did not develop any anti-S response during the entire study, indicating the importance to monitor the vaccine response since those who do not respond could now be given monoclonal antibodies if they contract a COVID-19 infection or in the future antivirals.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2 , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas Virais/efeitos adversos , Anticorpos Antivirais , Imunoglobulina G , Imunidade , Diálise Renal , Vacinas de mRNA
11.
J Am Chem Soc ; 144(39): 17758-17762, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36149400

RESUMO

Precisely modulated photoluminescence (PL) with external control is highly demanded in material and biological sciences. However, it is challenging to switch the PL on and off in the NIR region with a high modulation contrast. Here, we demonstrate that reversible on and off switching of the PL in the NIR region can be achieved in a bicomponent system comprised of PbS semiconducting nanocrystals (NCs) and diarylethene (DAE) photoswitches. Photoisomerization of DAE to the ring-closed form upon UV light irradiation causes substantial quenching of the NIR PL of PbS NCs due to efficient triplet energy transfer. The NIR PL fully recovers to an on state upon reversing the photoisomerization of DAE to the ring-open form with green light irradiation. Importantly, fully reversible switching occurs without obvious fatigue, and the high PL on/off ratio (>100) outperforms all previously reported assemblies of NCs and photoswitches.


Assuntos
Luminescência , Nanopartículas , Nanopartículas/química
12.
Chem Sci ; 13(17): 4944-4954, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35655894

RESUMO

Three pentacene dimers have been synthesized to investigate the effect of molecular rotation and rotational conformations on singlet fission (SF). In all three dimers, the pentacene units are linked by a 1,4-diethynylphenylene spacer that provides almost unimpeded rotational freedom between the pentacene- and phenylene-subunits in the parent dimer. Substituents on the phenylene spacer add varying degrees of steric hindrance that restricts both the rotation and the equilibrium distribution of different conformers; the less restricted conformers exhibit faster SF and more rapid subsequent triplet-pair recombination. Furthermore, the rotational conformers have small shifts in their absorption spectra and this feature has been used to selectively excite different conformers and study the resulting SF. Femtosecond transient absorption studies at 100 K reveal that the same dimer can have orders of magnitude faster SF in a strongly coupled conformer compared to a more weakly coupled one. Measurements in polystyrene further show that the SF rate is nearly independent of viscosity whereas the triplet pair lifetime is considerably longer in a high viscosity medium. The results provide insight into design criteria for maintaining high initial SF rate while suppressing triplet recombination in intramolecular singlet fission.

13.
Photochem Photobiol Sci ; 21(7): 1143-1158, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35441266

RESUMO

Triplet-triplet annihilation photon upconversion (TTA-UC) is a process in which low-energy light is transformed into light of higher energy. During the last two decades, it has gained increasing attention due to its potential in, e.g., biological applications and solar energy conversion. The highest efficiencies for TTA-UC systems have been achieved in liquid solution, owing to that several of the intermediate steps require close contact between the interacting species, something that is more easily achieved in diffusion-controlled environments. There is a good understanding of the kinetics dictating the performance in liquid TTA-UC systems, but so far, the community lacks cohesiveness in terms of how several important parameters are best determined experimentally. In this perspective, we discuss and present a "best practice" for the determination of several critical parameters in TTA-UC, namely triplet excited state energies, rate constants for triplet-triplet annihilation ([Formula: see text]), triplet excited-state lifetimes ([Formula: see text]), and excitation threshold intensity ([Formula: see text]). Finally, we introduce a newly developed method by which [Formula: see text], [Formula: see text], and [Formula: see text] may be determined simultaneously using the same set of time-resolved emission measurements. The experiment can be performed with a simple experimental setup, be ran under mild excitation conditions, and entirely circumvents the need for more challenging nanosecond transient absorption measurements, a technique that previously has been required to extract [Formula: see text]. Our hope is that the discussions and methodologies presented herein will aid the photon upconversion community in performing more efficient and manageable experiments while maintaining-and sometimes increasing-the accuracy and validity of the extracted parameters.


Assuntos
Fótons , Soluções
14.
J Am Chem Soc ; 144(8): 3706-3716, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175751

RESUMO

Triplet-triplet annihilation photon upconversion (TTA-UC) is a process in which triplet excitons combine to form emissive singlets and holds great promise in biological applications and for improving the spectral match in solar energy conversion. While high TTA-UC quantum yields have been reported for, for example, red-to-green TTA-UC systems, there are only a few examples of visible-to-ultraviolet (UV) transformations in which the quantum yield reaches 10%. In this study, we investigate the performance of six annihilators when paired with the sensitizer 2,3,5,6-tetra(9H-carbazol-9-yl)benzonitrile (4CzBN), a purely organic compound that exhibits thermally activated delayed fluorescence. We report a record-setting internal TTA-UC quantum yield (ΦUC,g) of 16.8% (out of a 50% maximum) for 1,4-bis((triisopropylsilyl)ethynyl)naphthalene, demonstrating the first example of a visible-to-UV TTA-UC system approaching the classical spin-statistical limit of 20%. Three other annihilators, of which 2,5-diphenylfuran has never been used for TTA-UC previously, also showed impressive performances with ΦUC,g above 12%. In addition, a new method to determine the rate constant of TTA is proposed, in which only time-resolved emission measurements are needed, circumventing the need for more challenging transient absorption measurements. The results reported herein represent an important step toward highly efficient visible-to-UV TTA-UC systems that hold great potential for driving high-energy photochemical reactions.


Assuntos
Fótons , Energia Solar
15.
J Infect Dis ; 225(6): 965-970, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33744954

RESUMO

Antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in serum and cerebrospinal fluid (CSF) samples from 16 patients with coronavirus disease 2019 and neurological symptoms were assessed using 2 independent methods. Immunoglobulin G (IgG) specific for the virus spike protein was found in 81% of patients in serum and in 56% in CSF. SARS-CoV-2 IgG in CSF was observed in 2 patients with negative serological findings. Levels of IgG in both serum and CSF were associated with disease severity (P < .05). All patients with elevated markers of central nervous system damage in CSF also had CSF antibodies (P = .002), and CSF antibodies had the highest predictive value for neuronal damage markers of all tested clinical variables.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/diagnóstico , Imunoglobulina G/sangue , Doenças do Sistema Nervoso/sangue , Doenças do Sistema Nervoso/líquido cefalorraquidiano , SARS-CoV-2/isolamento & purificação , Idoso , Anticorpos Neutralizantes/sangue , Formação de Anticorpos , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , COVID-19/sangue , COVID-19/líquido cefalorraquidiano , COVID-19/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/etiologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus
16.
J Am Chem Soc ; 143(45): 19232-19239, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34748317

RESUMO

Exciton coupling between the transition dipole moments of ordered dyes in supramolecular assemblies, so-called J/H-aggregates, leads to shifted electronic transitions. This can lower the excited state energy, allowing for emission well into the near-infrared regime. However, as we show here, it is not only the excited state energy modifications that J-aggregates can provide. A bay-alkylated quaterrylene was synthesized, which was found to form J-aggregates in 1,1,2,2-tetrachloroethane. A combination of superradiance and a decreased nonradiative relaxation rate made the J-aggregate four times more emissive than the monomeric counterpart. A reduced nonradiative relaxation rate is a nonintuitive consequence following the 180 nm (3300 cm-1) red-shift of the J-aggregate in comparison to the monomeric absorption. However, the energy gap law, which is commonly invoked to rationalize increased nonradiative relaxation rates with increasing emission wavelength, also contains a reorganization energy term. The reorganization energy is highly suppressed in J-aggregates due to exciton delocalization, and the framework of the energy gap law could therefore reproduce our experimental observations. J-Aggregates can thus circumvent the common belief that lowering the excited state energies results in large nonradiative relaxation rates and are thus a pathway toward highly emissive organic dyes in the NIR regime.

17.
BMC Immunol ; 22(1): 70, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666683

RESUMO

BACKGROUND: Hemodialysis (HD) patients have an increased risk of acquiring infections due to many health care contacts and may, in addition, have a suboptimal response to vaccination and a high mortality from Covid-19 infection. METHODS: In 50 HD patients (mean age 69.4 years, 62% men) administration of SARS-CoV-2BNT162b2 mRNA vaccine began in Dec 2020 and the immune response was evaluated 7-15 weeks after the last dose. Levels of Covid-19 (SARS-CoV-2) IgG antibody against the nucleocapsid antigen (anti-N) and the Spike antigen (anti-S) and T-cell reactivity testing against the Spike protein using ELISPOT technology were evaluated. RESULTS: Out of 50 patients, anti-S IgG antibodies indicating a vaccine effect or previous Covid-19 infection, were detected in 37 (74%), 5 (10%) had a borderline response and 8 (16%) were negative after two doses of vaccine. T-cell responses were detected in 29 (58%). Of the 37 patients with anti-S antibodies, 25 (68%) had a measurable T-cell response. 2 (40%) out of 5 patients with borderline anti-S and 2 (25%) without anti-S had a concomitant T-cell response. Twenty-seven (54%) had both an antibody and T-cell response. IgG antibodies to anti-N indicating a previous Covid-19 disease were detected in 7 (14%) patients. CONCLUSIONS: Most HD patients develop a B- and/or T-cell response after vaccination against Covid-19 but approx. 20% had a limited immunological response. T-cell reactivity against Covid-19 was only present in a few of the anti-S antibody negative patients.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Diálise Renal , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/prevenção & controle , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , Uremia/imunologia , Uremia/patologia , Vacinação
18.
Viruses ; 13(6)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073484

RESUMO

Due to the current, rapidly increasing Coronavirus disease 2019 (COVID-19) pandemic, efficient and highly specific diagnostic methods are needed. The receptor-binding part of the spike (S) protein, S1, has been suggested to be highly virus-specific; it does not cross-react with antibodies against other coronaviruses. Three recombinant partial S proteins of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) expressed in mammalian or baculovirus-insect cells were evaluated as antigens in a Luminex-based suspension immunoassay (SIA). The best performing antigen (S1; amino acids 16-685) was selected and further evaluated by serum samples from 76 Swedish patients or convalescents with COVID-19 (previously PCR and/or serologically confirmed), 200 pre-COVID-19 individuals (180 blood donors and 20 infants), and 10 patients with acute Epstein-Barr virus infection. All 76 positive samples showed detectable antibodies to S1, while none of the 210 negative controls gave a false positive antibody reaction. We further compared the COVID-19 SIA with a commercially available enzyme immunoassay and a previously evaluated COVID-19 rapid antibody test. The results revealed an overall assay sensitivity of 100%, a specificity of 100% for both IgM and IgG, a quantitative ability at concentrations up to 25 BAU/mL, and a better performance as compared to the commercial assays, suggesting the COVID-19 SIA as a most valuable tool for efficient laboratory-based serology.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Imunoensaio/métodos , SARS-CoV-2/imunologia , COVID-19/imunologia , Herpesvirus Humano 4/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/imunologia
19.
Chem Sci ; 12(20): 7073-7078, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34123335

RESUMO

A water soluble diarylethene (DAE) derivative that displays exceptionally intense fluorescence from the colorless open form has been synthesized and characterized using UV/vis spectroscopy and fluorescence microscopy. We show that the bright emission from the open form can be rapidly switched using amplitude modulated red light, that is, by light at wavelengths longer than those absorbed by the fluorescent species. This is highly appealing in any context where undesired background fluorescence disturbs the measurement, e.g., the autofluorescence commonly observed in fluorescence microscopy. We show that this scheme is conveniently applicable using lock-in detection, and that robust amplitude modulation of the probe fluorescence is indeed possible also in cell studies using fluorescence microscopy.

20.
J Phys Chem B ; 125(23): 6255-6263, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34081465

RESUMO

In the strive to develop triplet-triplet annihilation photon upconversion (TTA-UC) to become applicable in a viable technology, there is a need to develop upconversion systems that can function well in solid states. One method to achieve efficient solid-state TTA-UC systems is to replace the intermolecular energy-transfer steps with the corresponding intramolecular transfers, thereby minimizing loss channels involved in chromophore diffusion. Herein, we present a study of photon upconversion by TTA internally within a polymeric annihilator network (iTTA). By the design of the annihilator polymer and the choice of experiment conditions, we isolate upconversion emission governed by iTTA within the annihilator particles and eliminate possible external TTA between separate annihilator particles (xTTA). This approach leads to mechanistic insights into the process of iTTA and makes it possible to explore the upconversion kinetics and performance of a polymeric annihilator. In comparison to a monomeric upconversion system that only functions using xTTA, we show that upconversion in a polymeric annihilator is efficient also at extremely low annihilator concentrations and that the overall kinetics is significantly faster. The presented results show that intramolecular photon upconversion is a versatile concept for the development of highly efficient solid-state photon upconversion materials.


Assuntos
Antracenos , Polímeros , Difusão , Transferência de Energia , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA