Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 843056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309991

RESUMO

Osteoarthritis (OA) is a highly prevalent disease and a major health burden. Its development and progression are influenced by factors such as age, obesity or joint overuse. As a whole organ disease OA affects not only cartilage, bone and synovium but also ligaments, fatty or nervous tissue surrounding the joint. These joint tissues interact with each other and understanding this interaction is important in developing novel treatments. To incorporate and study these interactions in OA research, several co-culture models have evolved. They combine two or more cell types or tissues and investigate the influence of amongst others inflammatory or degenerative stimuli seen in OA. This review focuses on co-cultures and the differential processes occurring in a given tissue or cell as a consequence of being combined with another joint cell type or tissue, and/or the extent to which a co-culture mimics the in vivo processes. Most co-culture models depart from synovial lining and cartilage culture, but also fat pad and bone have been included. Not all of the models appear to reflect the postulated in vivo OA pathophysiology, although some of the discrepancies may indicate current assumptions on this process are not entirely valid. Systematic analysis of the mutual influence the separate compartments in a given model exert on each other and validation against in vivo or ex vivo observation is still largely lacking and would increase their added value as in vitro OA models.

2.
Materials (Basel) ; 14(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673651

RESUMO

Therapeutic pathogen recognition receptor (PRR) ligands are reaching clinical practice following their ability to skew the immune response in a specific direction. We investigated the effects of various therapeutic PRR ligands on bone cell differentiation and inflammation. Following stimulation, alkaline phosphatase (ALP) activity (Day 10), osteocalcin, osteonectin expression (Day 14), and calcium deposition (Day 21) were quantified in bone marrow-derived human mesenchymal stem cells (hMSCs). The osteoclastogenic response was determined by measuring tartrate-resistant acid phosphate (TRAP) activity in human monocytes. TNF-α, IL-6, IL-8, and IL-10 expressions were measured by enzyme-linked immunosorbent assay as an indicator of the ligands' inflammatory properties. We found that nucleic acid-based ligands Poly(I:C) and CpG ODN C increased early ALP activity in hMSCs by 4-fold without affecting osteoclast formation. These ligands did not enhance expression of the other, late osteogenic markers. MPLA, Curdlan, and Pam3CSK4 did not affect osteogenic differentiation, but inhibited TRAP activity in monocytes, which was associated with increased expression of all measured cytokines. Nucleic acid-based ligands are identified as the most promising osteo-immunomodulators, as they favor early osteogenic differentiation without inducing an exaggerated immune-cell mediated response or interfering in osteoclastogenesis and thus can be potentially harnessed for multifunctional coatings for bone biomaterials.

3.
PLoS One ; 14(7): e0220028, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31365542

RESUMO

To induce osteogenicity in bone graft substitutes, plasmid-based expression of BMP-2 (pBMP-2) has been successfully applied in gene activated matrices based on alginate polymer constructs. Here, we investigated whether cell seeding is necessary for non-viral BMP-2 gene expression in vivo. Furthermore, to gain insight in the role of BMP-producing cells, we compared inclusion of bone progenitor cells with non-osteogenic target cells in gene delivery constructs. Plasmid DNA encoding GFP (pGFP) was used to trace transfection of host tissue cells and seeded cells in a rat model. Transgene expression was followed in both cell-free alginate-ceramic constructs as well as constructs seeded with syngeneic fibroblasts or multipotent mesenchymal stromal cells (MSCs). Titration of pGFP revealed that the highest pGFP dose resulted in frequent presence of positive host cells in the constructs. Both cell-loaded groups were associated with transgene expression, most effectively in the MSC-loaded constructs. Subsequently, we investigated effectiveness of cell-free and cell-loaded alginate-ceramic constructs with pBMP-2 to induce bone formation. Local BMP-2 production was found in all groups containing BMP-2 plasmid DNA, and was most pronounced in the groups with MSCs transfected with high concentration pBMP-2. Bone formation was only apparent in the recombinant protein BMP-2 group. In conclusion, we show that non-viral gene delivery of BMP-2 is a potentially effective way to induce transgene expression in vivo, both in cell-seeded as well as cell-free conditions. However, alginate-based gene delivery of BMP-2 to host cells or seeded cells did not result in protein levels adequate for bone formation in this setting, calling for more reliable scaffold compatible transfection methods.


Assuntos
Proteína Morfogenética Óssea 2/genética , Regeneração Óssea , Alginatos/química , Animais , Diferenciação Celular , Cerâmica/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Plasmídeos/genética , Plasmídeos/metabolismo , Ratos , Ratos Endogâmicos F344 , Transfecção/métodos
4.
Adv Healthc Mater ; 8(10): e1801444, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30941927

RESUMO

Niches in the bone marrow regulate hematopoietic stem and progenitor cell (HSPC) fate and behavior through cell-cell interactions and soluble factor secretion. The niche-HSPC crosstalk is a very complex process not completely elucidated yet. To aid further investigation of this crosstalk, a functional in vitro 3D model that closely represents the main supportive compartments of the bone marrow is developed. Different combinations of human stromal cells and hydrogels are tested for their potential to maintain CD34+ HSPCs. Cell viability, clonogenic hematopoietic potential, and surface marker expression are assessed over time. Optimal HSPC support is obtained in presence of adipogenic and osteogenic cells, together with progenitor derived endothelial cells. When cultured in a bioactive hydrogel, the supportive cells self-assemble into a hypoxic stromal network, stimulating CD34+ CD38+ cell formation, while maintaining the pool of CD34+ 38- HSPCs. HSPC clusters colocalize with the stromal networks, in close proximity to sinusoidal clusters of CD31+ endothelial cells. Importantly, the primary in vitro niche model supports HSPCs with no cytokine addition. Overall, the engineered primary 3D bone marrow environment provides an easy and reliable model to further investigate interactions between HSPCs and their endosteal and perivascular niches, in the context of normal hematopoiesis or blood-related diseases.


Assuntos
Células-Tronco Hematopoéticas/citologia , Hidrogéis/química , Adipogenia/efeitos dos fármacos , Alginatos/química , Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Combinação de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Hidrogéis/farmacologia , Laminina/química , Osteogênese/efeitos dos fármacos , Proteoglicanas/química , Nicho de Células-Tronco
6.
Tissue Eng Part A ; 25(3-4): 193-202, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30101676

RESUMO

IMPACT STATEMENT: The main challenge in bone morphogenic protein 2 (BMP-2)-based application lies in finding strategies to prolong its biologic activity as it has a short biological half-life. The present study uses a phosphate-modified oligo[(polyethylene glycol) fumarate] hydrogel that can be tuned to achieve differential release profiles of biologically active BMP-2 release. We demonstrate that this platform outperforms Infuse®, currently used in the clinic and that the osteoinductive effect of BMP-2 is location dependent. Altogether, this study stresses the importance of evaluating efficacy of bone tissue engineering strategies at an orthotopic location rather than subcutaneously. Even more so, it emphasizes the role of biomaterials as a scaffold to achieve proper bone tissue engineering.


Assuntos
Proteína Morfogenética Óssea 2 , Osso e Ossos/metabolismo , Hidrogéis , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacocinética , Proteína Morfogenética Óssea 2/farmacologia , Osso e Ossos/citologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Masculino , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley
7.
Int J Nanomedicine ; 13: 8105-8118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555229

RESUMO

PURPOSE: Liposomal drug delivery can improve the therapeutic index of treatments for multiple myeloma. However, an appropriate 3D model for the in vitro evaluation of liposomal drug delivery is lacking. In this study, we applied a previously developed 3D bone marrow (BM) myeloma model to examine liposomal drug therapy. MATERIAL AND METHODS: Liposomes of different sizes (~75-200 nm) were tested in a 3D BM myeloma model, based on multipotent mesenchymal stromal cells, endothelial progenitor cells, and myeloma cells cocultured in hydrogel. The behavior and efficacy of liposomal drug therapy was investigated, evaluating the feasibility of testing liposomal drug delivery in 3D in vitro. Intracellular uptake of untargeted and integrin α4ß1 (very late antigen-4) targeted liposomes was compared in myeloma and supporting cells, as well as the effectivity of free and liposome-encapsulated chemotherapy (bortezomib, doxorubicin). Either cocultured myeloma cell lines or primary CD138+ myeloma cells received the treatments. RESULTS: Liposomes (~75-110 nm) passively diffused throughout the heterogeneously porous (~80-850 nm) 3D hydrogel model after insertion. Cellular uptake of liposomes was observed and was increased by targeting very late antigen-4. Liposomal bortezomib and doxorubicin showed increased cytotoxic effects toward myeloma cells compared with the free drugs, using either a cell line or primary myeloma cells. Cytotoxicity toward supporting BM cells was reduced using liposomes. CONCLUSION: The 3D model allows the study of liposome-encapsulated molecules on multiple myeloma and supporting BM cells, looking at cellular targeting, and general efficacy of the given therapy. The advantages of liposomal drug delivery were demonstrated in a primary myeloma model, enabling the study of patient-to-patient responses to potential drugs and treatment regimes.


Assuntos
Medula Óssea/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Lipossomos/administração & dosagem , Modelos Biológicos , Mieloma Múltiplo/tratamento farmacológico , Antibióticos Antineoplásicos/administração & dosagem , Medula Óssea/patologia , Proliferação de Células , Humanos , Técnicas In Vitro , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas
8.
Oncoimmunology ; 7(6): e1434465, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872571

RESUMO

Bone marrow niches support multiple myeloma, providing signals and cell-cell interactions essential for disease progression. A 3D bone marrow niche model was developed, in which supportive multipotent mesenchymal stromal cells and their osteogenic derivatives were co-cultured with endothelial progenitor cells. These co-cultured cells formed networks within the 3D culture, facilitating the survival and proliferation of primary CD138+ myeloma cells for up to 28 days. During this culture, no genetic drift was observed within the genomic profile of the primary myeloma cells, indicating a stable outgrowth of the cultured CD138+ population. The 3D bone marrow niche model enabled testing of a novel class of engineered immune cells, so called TEGs (αßT cells engineered to express a defined γδTCR) on primary myeloma cells. TEGs were engineered and tested from both healthy donors and myeloma patients. The added TEGs were capable of migrating through the 3D culture, exerting a killing response towards the primary myeloma cells in 6 out of 8 donor samples after both 24 and 48 hours. Such a killing response was not observed when adding mock transduced T cells. No differences were observed comparing allogeneic and autologous therapy. The supporting stromal microenvironment was unaffected in all conditions after 48 hours. When adding TEG therapy, the 3D model surpassed 2D models in many aspects by enabling analyses of specific homing, and both on- and off-target effects, preparing the ground for the clinical testing of TEGs. The model allows studying novel immunotherapies, therapy resistance mechanisms and possible side-effects for this incurable disease.

9.
Front Immunol ; 9: 945, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765377

RESUMO

Although controlled local inflammation is essential for adequate bone regeneration, several studies have shown that hyper-inflammatory conditions after major trauma are associated with impaired fracture healing. These hyper-inflammatory conditions include the trauma-induced systemic inflammatory response to major injury, open fractures, and significant injury to the surrounding soft tissues. The current literature suggests that increased or prolonged influx of neutrophils into the fracture hematoma may mediate impairment of bone regeneration after hyper-inflammatory conditions. The underlying mechanism remains unclear. We hypothesize that high neutrophil numbers inhibit synthesis of mineralized extracellular matrix (ECM) by bone marrow stromal cells (BMSCs). We therefore studied the effect of increasing concentrations of neutrophils on ECM synthesis by human BMSCs in vitro. Moreover, we determined how high neutrophil concentrations affect BMSC cell counts, as well as BMSC osteogenic activity determined by alkaline phosphatase (ALP) expression and ALP activity. Co-culture of BMSCs with neutrophils induced a 52% decrease in BMSC cell count (p < 0.01), a 64% decrease in the percentage of ALP+ cells (p < 0.001), a 28% decrease in total ALP activity (p < 0.01), and a significant decrease in the amount of mineralized ECM [38% decrease after 4 weeks (p < 0.05)]. Co-cultures with peripheral blood mononuclear cells and neutrophils within transwells did not induce a significant decrease in ALP activity. In conclusion, our data shows that a decreased amount of mineralized ECM became synthesized by BMSCs, when they were co-cultured with high neutrophil concentrations. Moreover, high neutrophil concentrations induced a decrease in BMSC cell counts and decreased ALP activity. Clarifying the underlying mechanism may contribute to development of therapies that augment bone regeneration or prevent impaired fracture healing after hyper-inflammatory conditions.


Assuntos
Biomineralização , Comunicação Celular , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neutrófilos/metabolismo , Antígenos de Superfície/metabolismo , Biomarcadores , Contagem de Células , Diferenciação Celular , Sobrevivência Celular , Técnicas de Cocultura , Matriz Extracelular/patologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Recém-Nascido , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Células-Tronco Mesenquimais/citologia , Neutrófilos/imunologia , Neutrófilos/patologia , Osteogênese
10.
Tissue Eng Part A ; 24(19-20): 1423-1431, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29766760

RESUMO

Ex vivo nonviral gene delivery of bone inductive factors has the potential to heal bone defects. Due to their inherent role in new bone formation, multipotent stromal cells (MSCs) have been studied as the primary target cell for gene delivery in a preclinical setting. The relative contribution of autocrine and paracrine mechanisms, and the need of osteogenic cells, remains unclear. This study investigates the contribution of MSCs as producer of transgenic bone morphogenetic proteins (BMPs) and to what extent the seeded MSCs participate in actual osteogenesis. Rat-derived MSCs or fibroblasts (FBs) were cotransfected with pBMP-2 and pBMP-6 or pBMP-7 via nucleofection. The bioactivity of BMP products was shown through in vitro osteogenic differentiation assays. To investigate their role in new bone formation, transfected cells were seeded on ceramic scaffolds and implanted subcutaneously in rats. Bone formation was assessed by histomorphometry after 8 weeks. As a proof of principle, we also investigated the suitability of bone marrow-derived mononuclear cells and the stromal vascular fraction isolated from adipose tissue for a one-stage gene delivery strategy. Bone formation was induced in all conditions containing cells overexpressing BMP heterodimers. Constructs seeded with FBs transfected with BMP-2/6 and MSCs transfected with BMP-2/6 showed comparable bone volumes, both significantly higher than controls. Single-stage gene delivery proved possible and resulted in some bone formation. We conclude that bone formation as a result of ex vivo BMP gene delivery can be achieved even without direct osteogenic potential of the transfected cell type, suggesting that transfected cells mainly function as a production facility for osteoinductive proteins. In addition, single-stage transfection and reimplantation of cells appeared feasible, thus facilitating future clinical translation of the method.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Técnicas de Transferência de Genes , Osseointegração , Animais , Diferenciação Celular , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Comunicação Parácrina , Plasmídeos/metabolismo , Ratos Endogâmicos F344 , Células Estromais/citologia , Células Estromais/metabolismo , Transgenes , Vírus/metabolismo
11.
Tissue Eng Part C Methods ; 24(5): 300-312, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29652626

RESUMO

The bone marrow microenvironment is the preferred location of multiple myeloma, supporting tumor growth and development. It is composed of a collection of interacting subniches, including the endosteal and perivascular niche. Current in vitro models mimic either of these subniches. By developing a model combining both niches, this study aims to further enhance the ability to culture primary myeloma cells in vitro. Also, the dependency of myeloma cells on each niche was studied. A 3D bone marrow model containing two subniches was created using 3D bioprinting technology. We used a bioprintable pasty calcium phosphate cement (CPC) scaffold with seeded osteogenic multipotent mesenchymal stromal cells (O-MSCs) to model the endosteal niche, and Matrigel containing both endothelial progenitor cells (EPCs) and MSCs to model the perivascular niche. Within the model containing one or both of the niches, primary CD138+ myeloma cells were cultured and analyzed for both survival and proliferation. The 3D bone marrow model with combined subniches significantly increasing the proliferation of CD138+ myeloma cells compared to both environments separately. The developed model showed an essential role of the perivascular niche over the endosteal niche in supporting myeloma cells. The developed model can be used to study the expansion of primary myeloma cells and their interactions with varying bone marrow subniches.


Assuntos
Medula Óssea/irrigação sanguínea , Microambiente Celular , Modelos Biológicos , Mieloma Múltiplo/patologia , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química
12.
Tissue Eng Part A ; 24(9-10): 819-829, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29065776

RESUMO

Off-the-shelf availability in large quantities, drug delivery functionality, and modifiable chemistry and mechanical properties make synthetic polymers highly suitable candidates for bone grafting. However, most synthetic polymers lack the ability to support cell attachment, proliferation, migration, and differentiation, and ultimately tissue formation. Incorporating anionic peptides into the polymer that mimics acidic proteins, which contribute to biomineralization and cellular attachment, could enhance bone formation. Therefore, this study investigates the effect of a phosphate functional group on osteoconductivity and BMP-2-induced bone formation in an injectable and biodegradable oligo[(polyethylene glycol) fumarate] (OPF) hydrogel. Three types of OPF hydrogels were fabricated using 0%, 20%, or 40% Bis(2-(methacryloyloxy)ethyl) phosphate creating unmodified OPF-noBP and phosphate-modified OPF-BP20 and OPF-BP40, respectively. To account for the osteoinductive effect of various BMP-2 release profiles, two different release profiles (i.e., different ratios of burst and sustained release) were obtained by varying the BMP-2 loading method. To investigate the osteoconductive effect of phosphate modification, unloaded OPF composites were assessed for bone formation in a bone defect model after 3, 6, and 9 weeks. To determine the effect of the hydrogel phosphate modification on BMP-2-induced bone formation, BMP-2 loaded OPF composites with differential BMP-2 release were analyzed after 9 weeks of subcutaneous implantation in rats. The phosphate-modified OPF hydrogels (OPF-BP20 and OPF-BP40) generated significantly more bone in an orthotopic defect compared to the unmodified hydrogel (OPF-noBP). Furthermore, the phosphate functionalized surface-enhanced BMP-2-induced ectopic bone formation regardless of the BMP-2 release profile. In conclusion, this study clearly shows that phosphate functional groups improve the osteoconductive properties of OPF and enhanced BMP-2-induced bone formation. Therefore, functionalizing hydrogels with phosphate groups by crosslinking monomers into the hydrogel matrix could provide a valuable method for improving polymer characteristics and holds great promise for bone tissue engineering.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatos/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Animais , Microscopia Eletrônica de Varredura , Microesferas , Ratos
13.
J Orthop Res ; 36(1): 138-148, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28681971

RESUMO

The difference in the adult height of mammals, and hence in endochondral bone formation, is not yet fully understood and may serve to identify targets for bone and cartilage regeneration. In line with this hypothesis, the intra-species disparity between the adult height of Great Danes and Miniature Poodles was investigated at a transcriptional level. Microarray analysis of the growth plate of five Great Danes and five Miniature Poodles revealed 2,981 unique genes that were differentially expressed, including many genes with an unknown role in skeletal development. A signaling pathway impact analysis indicated activation of the cell cycle, extracellular matrix receptor interaction and the tight junction pathway, and inhibition of pathways associated with inflammation and the complement cascade. In additional validation steps, the gene expression profile of the separate growth plate zones for both dog breeds were determined. Given that the BMP signaling is known for its crucial role in skeletal development and fracture healing, and BMP-2 is used in orthopaedic and spine procedures for bone augmentation, further investigations concentrated on the BMP pathway.The canonical BMP-2 and BMP-6 signaling pathway was activated in the Great Danes compared to Miniature Poodles. In conclusion, investigating the differential expression of genes involved in endochondral bone formation in small and large breed dogs, could be a game changing strategy to provide new insights in growth plate development and identify new targets for bone and cartilage regeneration. © 2017 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 36:138-148, 2018.


Assuntos
Perfilação da Expressão Gênica , Lâmina de Crescimento/metabolismo , Osteogênese , Animais , Proteínas Morfogenéticas Ósseas/fisiologia , Cães , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/fisiologia
14.
PLoS One ; 12(6): e0177628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28586346

RESUMO

In bone regenerative medicine there is a need for suitable bone substitutes. Hydrogels have excellent biocompatible and biodegradable characteristics, but their visco-elastic properties limit their applicability, especially with respect to 3D bioprinting. In this study, we modified the naturally occurring extracellular matrix glycosaminoglycan hyaluronic acid (HA), in order to yield photo-crosslinkable hydrogels with increased mechanical stiffness and long-term stability, and with minimal decrease in cytocompatibility. Application of these tailor-made methacrylated hyaluronic acid (MeHA) gels for bone tissue engineering and 3D bioprinting was the subject of investigation. Visco-elastic properties of MeHA gels, measured by rheology and dynamic mechanical analysis, showed that irradiation of the hydrogels with UV light led to increased storage moduli and elastic moduli, indicating increasing gel rigidity. Subsequently, human bone marrow derived mesenchymal stromal cells (MSCs) were incorporated into MeHA hydrogels, and cell viability remained 64.4% after 21 days of culture. Osteogenic differentiation of MSCs occurred spontaneously in hydrogels with high concentrations of MeHA polymer, in absence of additional osteogenic stimuli. Addition of bone morphogenetic protein-2 (BMP-2) to the culture medium further increased osteogenic differentiation, as evidenced by increased matrix mineralisation. MeHA hydrogels demonstrated to be suitable for 3D bioprinting, and were printed into porous and anatomically shaped scaffolds. Taken together, photosensitive MeHA-based hydrogels fulfilled our criteria for cellular bioprinted bone constructs within a narrow window of concentration.


Assuntos
Bioimpressão , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Regeneração Óssea , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Glicosaminoglicanos/síntese química , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacologia , Humanos , Ácido Hialurônico/síntese química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ácidos Polimetacrílicos/síntese química , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Reologia , Engenharia Tecidual , Alicerces Teciduais
15.
Tissue Eng Part C Methods ; 23(11): 673-685, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28637383

RESUMO

Pathologic conditions associated with bone formation can serve as models to identify bone-promoting mediators. The inflammatory response to bacterial infections generally leads to osteolysis and impaired bone healing, but paradoxically, it can also have pro-osteogenic effects. As a potential model to investigate pro-osteogenic stimuli, this study characterizes the bone formation in an established rabbit tibia model of periprosthetic infection. Our hypothesis was that the infection with Staphylococcus aureus (S. aureus) correlates with bone formation as a response to local inflammation. Fluorochromes showed excessive subperiosteal bone formation in infected tibiae, starting the first week and continuing throughout the study period. Despite the observed cortical lysis on micro-CT after 28 days, infection resulted in a twofold higher bone volume in the proximal tibiae compared to uninfected controls. The ipsilateral fibulae, nor the contralateral fibulae or tibiae were affected by infection. Next, we sought to confine the cause of stimulated bone formation to the isolated S. aureus cell wall. In absence of virulent bacterial infection, the S. aureus cell wall extract induced bone in a more favorable way without cortical lysis. This suggests that the sterile inflammatory reaction to bacterial antigens may be harnessed for bone regenerative purposes. Future investigations in this rabbit tibia model can lead to further identification of effective stimuli for clinical application.


Assuntos
Inflamação/patologia , Osteogênese , Tíbia/patologia , Animais , Peso Corporal , Parede Celular/metabolismo , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Coelhos , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Tíbia/diagnóstico por imagem , Tíbia/microbiologia , Microtomografia por Raio-X
16.
J Orthop Res ; 35(1): 140-146, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27101345

RESUMO

Diffuse idiopathic skeletal hyperostosis (DISH) is a predominantly radiographic diagnosis and histological knowledge of DISH is limited. The aim of this study was to describe the histological characteristics of DISH in the spinal column and to study the relation between DISH and intervertebral disc (IVD) degeneration. Therefore, 10 human cadaveric spines with fluoroscopic evidence of DISH were compared with 10 controls. Plain radiographs and computed tomography (CT) scans were obtained and tissue blocks were resected from three predefined levels of all specimens. The microscopic sections were scored by two blinded observers using a newly developed scoring system specific for characteristics of DISH and a validated scoring system for IVD degeneration. Maximum IVD height was measured on the CT scans. Analyses were performed using Fisher's exact test and Student's t-test. When compared to controls, the right sided sections from DISH specimens showed partial or complete bone bridges, consisting of cortical woven bone, accompanied by morphological changes in the adjoining part of the IVD. Using the histological scoring system for DISH, all parameters were significantly different between the DISH and control group (p < 0.01). The contralateral location did not show differences between the groups. The overall degree of IVD degeneration and height of IVD was comparable for the two groups. The histopathological changes observed in spines with DISH corresponded to the fluoroscopic images and CT scans. The degree of IVD degeneration and IVD height was comparable for both groups, suggesting a limited role for IVD degeneration in the pathogenesis of DISH. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:140-146, 2017.


Assuntos
Hiperostose Esquelética Difusa Idiopática/patologia , Coluna Vertebral/patologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Hiperostose Esquelética Difusa Idiopática/classificação , Hiperostose Esquelética Difusa Idiopática/complicações , Degeneração do Disco Intervertebral/etiologia , Masculino
17.
Acta Biomater ; 37: 195-205, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27019145

RESUMO

UNLABELLED: This study comparatively evaluated the osteophilic capacity of 17 different surface modifications (i.e. fourteen different chemical modifications via ceramic coatings and three different physical modifications via surface roughness) for titanium (Ti) surfaces. All surface modifications were subjected to physico-chemical analyses and immersion in simulated body fluid (SBF) for coating stability assessment. Subsequently, a bone conduction chamber cassette model on the goat transverse process was used for comparative in vivo analysis based on bone responses to these different surface modifications after twelve weeks. Histological and histomorphometrical analyses in terms of longitudinal bone-to-implant contact percentage (BIC%), relative bone area (BA%) were investigated within each individual channel and maximum bone height (BH). Characterization of the surface modifications showed significant differences in surface chemistry and surface roughness among the surface modifications. Generally, immersion of the coatings in SBF showed net uptake of calcium by thick coatings (>50µm; plasma-sprayed and biomimetic coatings) and no fluctuations in the SBF for thin coatings (<50µm). The histomorphometrical data set demonstrated that only plasma-sprayed CaP coatings performed superiorly regarding BIC%, BA% and BH compared to un-coated surfaces, irrespective of surface roughness of the latter. In conclusion, this study demonstrated that the deposition of plasma-sprayed CaP coating with high roughness significantly improves the osteophilic capacity of titanium surfaces in a chamber cassette model. STATEMENT OF SIGNIFICANCE: For the bone implant market, a large number of surface modifications are available on different types of (dental and orthopedic) bone implants. As the implant surface provides the interface at which the biomaterial interacts with the surrounding (bone) tissue, it is of utmost importance to know what surface modification has optimal osteophilic properties. In contrast to numerous earlier studies on bone implant surface modifications with limited number of comparison surfaces, the manuscript by van Oirschot et al. describes the data of in vivo experiments using a large animal model that allows for direct and simultaneous comparison of a large variety of surface modifications, which included both commercially available and experimental surface modifications for bone implants. These data clearly show the superiority of plasma-sprayed hydroxyapatite coatings regarding bone-to-implant contact, bone amount, and bone height.


Assuntos
Substitutos Ósseos , Interface Osso-Implante , Fosfatos de Cálcio , Materiais Revestidos Biocompatíveis , Titânio , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Cabras , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
18.
Adv Healthc Mater ; 5(9): 1071-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26913710

RESUMO

Inadequate cell retention and survival in cardiac stem cell therapy seems to be reducing the therapeutic effect of the injected stem cells. In order to ameliorate their regenerative effects, various biomaterials are being investigated for their potential supportive properties. Here, gelatin microspheres (MS) are utilized as microcarriers to improve the delivery and therapeutic efficacy of cardiac progenitor cells (CPCs) in the ischemic myocardium. The gelatin MS, generated from a water-in-oil emulsion, are able to accommodate the attachment of CPCs, thereby maintaining their cardiogenic potential. In a mouse model of myocardial infarction, we demonstrated the ability of these microcarriers to substantially enhance cell engraftment in the myocardium as indicated by bioluminescent imaging and histological analysis. However, despite an observed tenfold increase in CPC numbers in the myocardium, echocardiography, and histology reveals that mice treated with MS-CPCs show marginal improvement in cardiac function compared to CPCs only. Overall, a straightforward and translational approach is developed to increase the retention of stem cells in the ischemic myocardium. Even though the current biomaterial setup with CPCs as cell source does not translate into improved therapeutic action, coupling this developed technology with stem cell-derived cardiomyocytes can lead to an effective remuscularization therapy.


Assuntos
Células Imobilizadas , Gelatina/química , Microesferas , Mioblastos Cardíacos , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Animais , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/transplante , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia
19.
Clin Immunol ; 164: 78-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26854617

RESUMO

The role of inflammatory cells in bone regeneration remains unclear. We hypothesize that leukocytes contribute to fracture healing by rapidly synthesizing an "emergency extracellular matrix (ECM)" before stromal cells infiltrate the fracture hematoma (FH) and synthesize the eventual collagenous bone tissue. 53 human FHs were isolated at different time points after injury, ranging from day 0 until day 23 after trauma and stained using (immuno)histochemistry. FHs isolated within 48 h after injury contained fibronectin(+) ECM, which increased over time. Neutrophils within the early FHs stained positive for cellular fibronectin and neutrophil derived particles were visible within the fibronectin(+) ECM. Stromal cells appeared at day 5 after injury or later and collagen type I birefringent fibrils could be identified during the second week after injury. Our study suggests that neutrophils contribute to bone regeneration by synthesizing an "emergency ECM" before stromal cells infiltrate the FH and synthesize the eventual bone tissue.


Assuntos
Matriz Extracelular/imunologia , Fibronectinas/imunologia , Consolidação da Fratura/imunologia , Neutrófilos/imunologia , Adulto , Contagem de Células , Feminino , Hematoma/imunologia , Humanos , Masculino , Pessoa de Meia-Idade
20.
Bone ; 84: 262-270, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780388

RESUMO

The local immune response is important to consider when the aim is to improve bone regeneration. Recently T lymphocytes and their associated cytokines have been identified as regulators in fracture callus formation, but it is not known whether T cells affect bone progenitor cells directly. The goal of this in vitro study was to investigate the role of different T cell subsets and their secreted factors on the osteogenic differentiation of human mesenchymal stem cells (MSCs). Significant increases in the alkaline phosphatase activity and the subsequent matrix mineralization by MSCs were found after their exposure to activated T cells or activated T cell-derived conditioned medium. Blocking IFN-γ in the conditioned medium abolished its pro-osteogenic effect, while blocking TGF-ß further enhanced osteogenesis. The relative contribution of an anti- or proinflammatory T cell phenotype in MSC osteogenic differentiation was studied next. Enrichment of the fraction of anti-inflammatory regulatory T cells had no beneficial osteogenic effect. In contrast, soluble factors derived from enriched T helper 17 cells upregulated the expression of osteogenic markers by MSCs. IL-17A, and IL-17F, their main proinflammatory cytokines, similarly exhibited strong osteogenic effects when exposed directly to MSCs. IL-17A in particular showed a synergistic action together with bone morphogenetic protein 2. These results indicate that individual T cell subsets, following their activation, affect osteoblast maturation in a different manner through the production of soluble factors. From all T cells, the proinflammatory T cells, including the T helper 17 cells, are most stimulatory for osteogenesis.


Assuntos
Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Interleucina-17/farmacologia , Osteoblastos/citologia , Idoso , Linfócitos T CD4-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos/citologia , Subpopulações de Linfócitos/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA