Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 18777, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139757

RESUMO

Probiotic supplementation arises as playing an immune-stimulatory role. High-intensity and -volume exercise can inhibit immune cell function, which threatens athletic performance and recovery. We hypothesized that 30 days of probiotic supplementation could stabilize the immune system of athletes preventing immune suppression after a marathon race. Twenty-seven male marathonists were double-blinded randomly into probiotic (Bifidobacterium-animalis-subsp.-Lactis (10 × 109) and Lactobacillus-Acidophilus (10 × 109) + 5 g of maltodextrin) and placebo (5 g of maltodextrin) group. They received 30 sachets and supplemented 1 portion/day during 30 days before the race. Blood were collected 30 days before (rest), 1 day before (pre), 1 h after (post) and 5 days after the race (recovery). Both chronic and acute exercise modulated a different T lymphocyte population (CD3+CD4-CD8- T-cells), increasing pre-race, decreasing post and returning to rest values at the recovery. The total number of CD8 T cell and the memory subsets statistically decreased only in the placebo group post-race. Pro-inflammatory cytokine production by stimulated lymphocytes decreased in the probiotic group after the supplementation period. 30 days of probiotic supplementation maintained CD8 T cell and effector memory cell population and played an immunomodulatory role in stimulated lymphocytes. Both, training and marathon modulated a non-classical lymphocyte population regardless of probiotic supplementation.


Assuntos
Desempenho Atlético/fisiologia , Linfócitos T CD8-Positivos/imunologia , Suplementos Nutricionais , Contagem de Linfócitos , Corrida de Maratona/fisiologia , Probióticos/administração & dosagem , Probióticos/farmacologia , Adulto , Bifidobacterium animalis , Citocinas/metabolismo , Método Duplo-Cego , Humanos , Imunomodulação/imunologia , Mediadores da Inflamação/metabolismo , Lactobacillus acidophilus , Masculino , Adulto Jovem
2.
Mem Inst Oswaldo Cruz ; 105(6): 786-91, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20944993

RESUMO

Enteroinvasive Escherichia coli (EIEC) and Shigella spp cause bacillary dysentery in humans by invading and multiplying within epithelial cells of the colonic mucosa. Although EIEC and Shigella share many genetic and biochemical similarities, the illness caused by Shigella is more severe. Thus, genomic and structure-function molecular studies on the biological interactions of these invasive enterobacteria with eukaryotic cells have focused on Shigella rather than EIEC. Here we comparatively studied the interactions of EIEC and of Shigella flexneri with cultured J774 macrophage-like cells. We evaluated several phenotypes: (i) bacterial escape from macrophages after phagocytosis, (ii) macrophage death induced by EIEC and S. flexneri, (iii) macrophage cytokine expression in response to infection and (iv) expression of plasmidial (pINV) virulence genes. The results showed that S. flexneri caused macrophage killing earlier and more intensely than EIEC. Both pathogens induced significant macrophage production of TNF, IL-1 and IL-10 after 7 h of infection. Transcription levels of the gene invasion plasmid antigen-C were lower in EIEC than in S. flexneri throughout the course of the infection; this could explain the diminished virulence of EIEC compared to S. flexneri.


Assuntos
Citocinas/análise , Escherichia coli/patogenicidade , Regulação Bacteriana da Expressão Gênica/imunologia , Macrófagos/microbiologia , Shigella flexneri/patogenicidade , Fatores de Virulência/biossíntese , Morte Celular , ELISPOT , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Shigella flexneri/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA