RESUMO
BACKGROUND: The genus Ternstroemia is associated with the vulnerable tropical montane cloud forest in Mexico and with other relevant vegetation types worldwide. It contains threatened and pharmacologically important species and has taxonomic issues regarding its species limits. This study describes 38 microsatellite markers generated using a genomic-based approach. METHODS AND RESULTS: We tested 23 of these markers in a natural population of Ternstroemia lineata. These markers are highly polymorphic (all loci polymorphic with 3-14 alleles per locus and expected heterozygosity between 0.202 and 0.908), most of them (19 out of 23) are in Hardy-Weinberg Equilibrium and free of null alleles (18 out of 23). Also we found no evidence of linkage among them. Finally, we tested the transferability to six other American species of Ternstroemia, two other Pentaphylacaceae species, and four species from different families within the order Ericales. CONCLUSIONS: These molecular resources are promising tools to investigate genetic diversity loss and as barcodes for ethnopharmacological applications and species delimitation in the family Pentaphylacaceae and some Ericales, among other applications.
Assuntos
Ericales , Humanos , Ericales/genética , Genoma , Genômica , Heterozigoto , Repetições de Microssatélites/genética , Alelos , Sequenciamento de Nucleotídeos em Larga Escala , Loci Gênicos/genéticaRESUMO
Climatic variations influence the adaptive capacity of trees within tropical montane cloud forests species. Phenology studies have dominated current studies on tree species. Leaf vein morphology has been related to specific climatic oscillations and varies within species along altitudinal gradients. We tested that certain Neotropical broad leaf Magnolia species might be more vulnerable to leaf vein adaptation to moisture than others, as they would be more resilient to the hydric deficit. We assessed that leaf vein trait variations (vein density, primary vein size, vein length, and leaf base angle) among four Magnolia species (Magnolia nuevoleonensis, M. alejandrae, M. rzedowskiana, and Magnolia vovidesii) through the Mexican Tropical montane cloud forest with different elevation gradient and specific climatic factors. The temperature, precipitation, and potential evaporation differed significantly among Magnolia species. We detected that M. rzedowskiana and M. vovidesii with longer leaves at higher altitude sites are adapted to higher humidity conditions, and that M. nuevoleonensis and M. alejandrae inhabiting lower altitude sites are better adjusted to the hydric deficit. Our results advance efforts to identify the Magnolia species most vulnerable to climate change effects, which must focus priorities for conservation of this ecosystem, particularly in the Mexican tropical montane cloud forests.
RESUMO
Variation in leaf morphology is correlated with environmental variables, such as precipitation, temperature and soil composition. Several studies have pointed out that individual plasticity can largely explain the foliar phenotypic differences observed in populations due to climatic change and have suggested that the environment plays an important role in the evolution of plant species by selecting for phenotypic variation. Thus, the study of foliar morphology in plant populations can help us identify the environmental factors that have potentially influenced the process of species diversification. In this study, we analyzed morphological variation in the leaf traits of the Ternstroemia lineata species complex (Penthaphylacaceae) and its relation to climatic variables across the species distribution area to identify the patterns of morphological differentiation within this species complex. Based on the collected leaves of 270 individuals from 32 populations, we analyzed nine foliar traits using spatial interpolation models and multivariate statistics. A principal component analysis identified three main morphological traits (leaf length and two leaf shape variables) that were used to generate interpolated surface maps to detect discrete areas delimited by zones of rapid change in the values of the morphological traits. We identified a mosaic coarse-grain pattern of geographical distribution in the variation of foliar traits. According to the interpolation maps, we could define nine morphological groups and their geographic distributions. Longer leaves, spatulate leaves and the largest foliar area were located in sites with lower precipitation and higher seasonality of precipitation following a northwest-southeast direction and following significant latitudinal and longitudinal gradients. According to the phenogram of the relationships of the nine morphological groups based on morphological similarity, the putative species and subspecies of the T. lineata species complex did not show a clear pattern of differentiation. In this study, we found a complex pattern of differentiation with some isolated populations and some other contiguous populations differentiated by different traits. Further genetic and systematic studies are needed to clarify the evolutionary relationships in this species complex.