Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 14(3)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35344942

RESUMO

Recently developed modular bioassembly techniques hold tremendous potential in tissue engineering and regenerative medicine, due to their ability to recreate the complex microarchitecture of native tissue. Here, we developed a novel approach to fabricate hybrid tissue-engineered constructs adopting high-throughput microfluidic and 3D bioassembly strategies. Osteochondral tissue fabrication was adopted as an example in this study, because of the challenges in fabricating load bearing osteochondral tissue constructs with phenotypically distinct zonal architecture. By developing cell-instructive chondrogenic and osteogenic bioink microsphere modules in high-throughput, together with precise manipulation of the 3D bioassembly process, we successfully fabricated hybrid engineered osteochondral tissuein vitrowith integrated but distinct cartilage and bone layers. Furthermore, by encapsulating allogeneic umbilical cord blood-derived mesenchymal stromal cells, and demonstrating chondrogenic and osteogenic differentiation, the hybrid biofabrication of hydrogel microspheres in this 3D bioassembly model offers potential for an off-the-shelf, single-surgery strategy for osteochondral tissue repair.


Assuntos
Cartilagem Articular , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Diferenciação Celular , Condrogênese , Hidrogéis , Microesferas , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais
2.
Biofabrication ; 14(3)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35320796

RESUMO

Bone regeneration of critical-sized bone defects, bone fractures or joint replacements remains a significant clinical challenge. Although there has been rapid advancement in both the fields of bone tissue engineering and additive manufacturing, functional bone implants with rapid vascularization capacity to ensure osseointegration and long-term biological fixation in large bone defects remains limited in clinics. In this study, we developed anin vitrovascularized bone implant by combining cell-laden hydrogels with direct metal printed (DMP) porous titanium alloys (Ti-6Al-4V). A 5 wt% allylated gelatin (GelAGE), was utilized to co-encapsulate human mesenchymal stromal cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) to investigate concurrent osteogenic and vasculogenic performance. DMP macro-porous Ti-6Al-4V scaffolds were subsequently infused/enriched with cell-laden GelAGE to examine the feasibility to deliver cells and engineer vascular-like networks in the hybrid implant. Furthermore, as a proof of concept, a full-scale porous Ti-6Al-4V acetabular cup was impregnated with cell-laden hydrogel to validate the clinical potential of this strategy. The vasculogenic potential was evaluated by examining micro-capillary formation coupled with capillary network maturation and stabilization. Osteogenic differentiation was assessed via alkaline phosphatase activity as well as osteocalcin and osteopontin expression. Our results suggested that GelAGE supported HUVECs spreading and vascular-like network formation, along with osteogenesis of hMSCs. Titanium hybrid constructs with cell-laden hydrogel demonstrated enhanced osteogenesis with similar vasculogenic capability compared to the cell-laden hydrogel alone constructs. The full-scale implant with cell-laden hydrogel coating similarly showed cell distribution and spreading, implying the potential for further clinical application. Our study presents the feasibility of integrating bio-functional hydrogels with porous titanium implants to fabricate a vascularized hybrid construct with both mechanical support and preferable biological functionality (osteogenesis/vasculogenesis), which paves the way for improved strategies to enhance bone regeneration in complex large bone defects achieving long-term bone-implant fixation.


Assuntos
Osseointegração , Osteogênese , Células Endoteliais , Humanos , Hidrogéis/farmacologia , Titânio/farmacologia
3.
Adv Healthc Mater ; 11(2): e2101873, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710291

RESUMO

The principle challenge for engineering viable, cell-laden hydrogel constructs of clinically-relevant size, is rapid vascularization, in order to moderate the finite capacity of passive nutrient diffusion. A multiscale vascular approach, with large open channels and bulk microcapillaries may be an admissible approach to accelerate this process, promoting overall pre-vascularization for long-term viability of constructs. However, the limited availability of bioinks that possess suitable characteristics that support both fabrication of complex architectures and formation of microcapillaries, remains a barrier to advancement in this space. In this study, gelatin-norbornene (Gel-NOR) is investigated as a vascular bioink with tailorable physico-mechanical properties, which promoted the self-assembly of human stromal and endothelial cells into microcapillaries, as well as being compatible with extrusion and lithography-based biofabrication modalities. Gel-NOR constructs containing self-assembled microcapillaries are successfully biofabricated with varying physical architecture (fiber diameter, spacing, and orientation). Both channel sizes and cell types affect the overall structural changes of the printed constructs, where cross-signaling between both human stromal and endothelial cells may be responsible for the reduction in open channel lumen observed over time. Overall, this work highlights an exciting three-way interplay between bioink formulation, construct design, and cell-mediated response that can be exploited towards engineering vascular tissues.


Assuntos
Bioimpressão , Capilares , Gelatina , Engenharia Tecidual , Capilares/crescimento & desenvolvimento , Células Endoteliais , Gelatina/química , Humanos , Hidrogéis/química , Norbornanos/química , Impressão Tridimensional , Alicerces Teciduais/química
4.
Bone ; 154: 116198, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534709

RESUMO

Tissue engineering approaches for bone repair have rapidly evolved due to the development of novel biofabrication technologies, providing an opportunity to fabricate anatomically-accurate living implants with precise placement of specific cell types. However, limited availability of biomaterial inks, that can be 3D-printed with high resolution, while providing high structural support and the potential to direct cell differentiation and maturation towards the osteogenic phenotype, remains an ongoing challenge. Aiming towards a multifunctional biomaterial ink with high physical stability and biological functionality, this work describes the development of a nanocomposite biomaterial ink (Mg-PCL) comprising of magnesium hydroxide nanoparticles (Mg) and polycaprolactone (PCL) thermoplastic for 3D printing of strong and bioactive bone regenerative scaffolds. We characterised the Mg nanoparticle system and systematically investigated the cytotoxic and osteogenic effects of Mg supplementation to human mesenchymal stromal cells (hMSCs) 2D-cultures. Next, we prepared Mg-PCL biomaterial ink using a solvent casting method, and studied the effect of Mg over mechanical properties, printability and scaffold degradation. Furthermore, we delivered MSCs within Mg-PCL scaffolds using a gelatin-methacryloyl (GelMA) matrix, and evaluated the effect of Mg over cell viability and osteogenic differentiation. Nanocomposite Mg-PCL could be printed with high fidelity at 20 wt% of Mg content, and generated a mechanical reinforcement between 30%-400% depending on the construct internal geometry. We show that Mg-PCL degrades faster than standard PCL in an accelerated-degradation assay, which has positive implications towards in vivo implant degradation and bone regeneration. Mg-PCL did not affect MSCs viability, but enhanced osteogenic differentiation and bone-specific matrix deposition, as demonstrated by higher ALP/DNA levels and Alizarin Red calcium staining. Finally, we present proof of concept of Mg-PCL being utilised in combination with a bone-specific bioink (Sr-GelMA) in a coordinated-extrusion bioprinting strategy for fabrication of hybrid constructs with high stability and synergistic biological functionality. Mg-PCL further enhanced the osteogenic differentiation of encapsulated MSCs and supported bone ECM deposition within the bioink component of the hybrid construct, evidenced by mineralised nodule formation, osteocalcin (OCN) and collagen type-I (Col I) expression within the bioink filaments. This study demonstrated that magnesium-based nanocomposite bioink material optimised for extrusion-based 3D printing of bone regenerative scaffolds provide enhanced mechanical stability and bone-related bioactivity with promising potential for skeletal tissue regeneration.


Assuntos
Bioimpressão , Nanocompostos , Bioimpressão/métodos , Regeneração Óssea , Nanocompostos/química , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Acta Biomater ; 132: 188-216, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33713862

RESUMO

The evolution of additive manufacturing (AM) technologies, biomaterial development and our increasing understanding of cell biology has created enormous potential for the development of personalized regenerative therapies. In the context of skeletal tissue engineering, physical and biological demands play key roles towards successful construct implantation and the achievement of bone, cartilage and blood vessel tissue formation. Nevertheless, meeting such physical and biological demands to mimic the complexity of human tissues and their functionality is still a significant ongoing challenge. Recent studies have demonstrated that combination of AM technologies and advanced biomaterials has great potential towards skeletal tissue engineering. This review aims to analyze how the most prominent technologies and discoveries in the field converge towards the development of advanced constructs for skeletal regeneration. Particular attention is placed on hybrid biofabrication strategies, combining bioinks for cell delivery with biomaterial inks providing physical support. Hybrid biofabrication has been the focus of recent emerging strategies, however there has been limited review and analysis of these techniques and the challenges involved. Furthermore, we have identified that there are multiple hybrid fabrication strategies, here we present a category system where each strategy is reviewed highlighting their distinct advantages, challenges and potential applications. In addition, bioinks and biomaterial inks are the main components of the hybrid biofabrication strategies, where it is recognized that such platforms still lack optimal physical and biological functionality. Thus, this review also explores the development of composite materials specifically targeting the enhancement of physical and biological functionality towards improved skeletal tissue engineering. STATEMENT OF SIGNIFICANCE: Biofabrication strategies capable of recreating the complexity of native tissues could open new clinical possibilities towards patient-specific regenerative therapies and disease models. Several reviews target the existing additive manufacturing (AM) technologies that may be utilised for biomedical purposes. However, this work presents a unique perspective, describing how such AM technologies have been recently translated towards hybrid fabrication strategies, targeting the fabrication of constructs with converging physical and biological properties. Furthermore, we address composite bioinks and biomaterial inks that have been engineered to overcome traditional limitations, and might be applied to the hybrid fabrication strategies outlined. This work offers ample perspectives and insights into the current and future challenges for the fabrication of skeletal tissues aiming towards clinical and biomedical applications.


Assuntos
Materiais Biocompatíveis , Bioimpressão , Humanos , Tinta , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
7.
Biomater Sci ; 8(24): 7093-7105, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33079079

RESUMO

The biophysical properties of biomaterials are key to directing the biological responses and biomaterial integration and function in in situ tissue engineering approaches. We present silk photo-lyogels, a biomaterial format fabricated using a new combinatorial approach involving photo-initiated crosslinking of silk fibroin via di-tyrosine bonds followed by lyophilization to generate 3D, porous lyogels showing physical properties distinct to those of lyophilized silk sponges or silk hydrogels. This fabrication approach allowed introduction of microchannels into 3D constructs via biofabrication approaches involving silk crosslinking around an array of 3D printed photocurable resin pillars to generate parallel channels or around a 3D printed sacrificial thermosensitive gel to generate interconnected channels in a rapid manner and without the need for chemical modification of silk fibroin. The presence of interconnected microchannels significantly improved migration of endothelial cells into 3D photo-lyogels in vitro, and tissue infiltration, photo-lyogel integration, and vascularization when implanted in vivo in a mouse subcutaneous model. Taken together, these findings demonstrate the feasibility and utility of a new combinatorial fabrication approach for generation of silk biomaterials that support cell interactions and implant integration for in situ tissue engineering approaches.


Assuntos
Fibroínas , Animais , Materiais Biocompatíveis , Células Endoteliais , Camundongos , Seda , Engenharia Tecidual , Alicerces Teciduais
8.
Adv Healthc Mater ; 9(4): e1901667, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31943911

RESUMO

Silk fibroin hydrogels crosslinked through di-tyrosine bonds are clear, elastomeric constructs with immense potential in regenerative medicine applications. In this study, demonstrated is a new visible light-mediated photoredox system for di-tyrosine bond formation in silk fibroin that overcomes major limitations of current conventional enzymatic-based crosslinking. This photomediated system rapidly crosslinks silk fibroin (<1 min), allowing encapsulation of cells at significantly higher cell densities (15 million cells mL-1 ) while retaining high cell viability (>80%). The photocrosslinked silk hydrogels present more stable mechanical properties which do not undergo spontaneous transition to stiff, ß-sheet-rich networks typically seen for enzymatically crosslinked systems. These hydrogels also support long-term culture of human articular chondrocytes, with excellent cartilage tissue formation. This system also facilitates the first demonstration of biofabrication of silk fibroin constructs in the absence of chemical modification of the protein structure or rheological additives. Cell-laden constructs with complex, ordered, graduated architectures, and high resolution (40 µm) are fabricated using the photocrosslinking system, which cannot be achieved using the enzymatic crosslinking system. Taken together, this work demonstrates the immense potential of a new crosslinking approach for fabrication of elastomeric silk hydrogels with applications in biofabrication and tissue regeneration.


Assuntos
Fibroínas , Hidrogéis , Contagem de Células , Condrogênese , Humanos , Seda
9.
Biofabrication ; 11(3): 035027, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30991370

RESUMO

Bioprinting of living cells is rapidly developing as an advanced biofabrication approach to engineer tissues. Bioinks can be extruded in three-dimensions (3D) to fabricate complex and hierarchical constructs for implantation. However, a lack of functionality can often be attributed to poor bioink properties. Indeed, advanced bioinks encapsulating living cells should: (i) present optimal rheological properties and retain 3D structure post fabrication, (ii) promote cell viability and support cell differentiation, and (iii) localise proteins of interest (e.g. vascular endothelial growth factor (VEGF)) to stimulate encapsulated cell activity and tissue ingrowth upon implantation. In this study, we present the results of the inclusion of a synthetic nanoclay, Laponite® (LPN) together with a gelatin methacryloyl (GelMA) bioink and the development of a functional cell-instructive bioink. A nanocomposite bioink displaying enhanced shape fidelity retention and interconnected porosity within extrusion-bioprinted fibres was observed. Human bone marrow stromal cell (HBMSC) viability within the nanocomposite showed no significant changes over 21 days of culture in LPN-GelMA (85.60 ± 10.27%), compared to a significant decrease in GelMA from 7 (95.88 ± 2.90%) to 21 days (55.54 ± 14.72%) (p < 0.01). HBMSCs were observed to proliferate in LPN-GelMA with a significant increase in cell number over 21 days (p < 0.0001) compared to GelMA alone. HBMSC-laden LPN-GelMA scaffolds supported osteogenic differentiation evidenced by mineralised nodule formation, including in the absence of the osteogenic drug dexamethasone. Ex vivo implantation in a chick chorioallantoic membrane model, demonstrated excellent integration of the bioink constructs in the vascular chick embryo after 7 days of incubation. VEGF-loaded LPN-GelMA constructs demonstrated significantly higher vessel penetration than GelMA-VEGF (p < 0.0001) scaffolds. Integration and vascularisation was directly related to increased drug absorption and retention by LPN-GelMA compared to LPN-free GelMA. In summary, a novel light-curable nanocomposite bioink for 3D skeletal regeneration supportive of cell growth and growth factor retention and delivery, evidenced by ex vivo vasculogenesis, was developed with potential application in hard and soft tissue reparation.


Assuntos
Gelatina/química , Tinta , Nanocompostos/química , Neovascularização Fisiológica , Osteogênese , Silicatos/química , Animais , Bioimpressão , Bovinos , Proliferação de Células , Sobrevivência Celular , Galinhas , Membrana Corioalantoide/metabolismo , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Metacrilatos/química , Muramidase/metabolismo , Porosidade , Soroalbumina Bovina/metabolismo , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Biofabrication ; 10(3): 034101, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29693552

RESUMO

Lithography-based three-dimensional (3D) printing technologies allow high spatial resolution that exceeds that of typical extrusion-based bioprinting approaches, allowing to better mimic the complex architecture of biological tissues. Additionally, lithographic printing via digital light processing (DLP) enables fabrication of free-form lattice and patterned structures which cannot be easily produced with other 3D printing approaches. While significant progress has been dedicated to the development of cell-laden bioinks for extrusion-based bioprinting, less attention has been directed towards the development of cyto-compatible bio-resins and their application in lithography-based biofabrication, limiting the advancement of this promising technology. In this study, we developed a new bio-resin based on methacrylated poly(vinyl alcohol) (PVA-MA), gelatin-methacryloyl (Gel-MA) and a transition metal-based visible light photoinitiator. The utilization of a visible light photo-initiating system displaying high molar absorptivity allowed the bioprinting of constructs with high resolution features, in the range of 25-50 µm. Biofunctionalization of the resin with 1 wt% Gel-MA allowed long term survival (>90%) of encapsulated cells up to 21 d, and enabled attachment and spreading of endothelial cells seeded on the printed hydrogels. Cell-laden hydrogel constructs of high resolution with complex and ordered architecture were successfully bioprinted, where the encapsulated cells remained viable, homogenously distributed and functional. Bone and cartilage tissue synthesis was confirmed by encapsulated stem cells, underlining the potential of these DLP-bioprinted hydrogels for tissue engineering and biofabrication. Overall, the PVA-MA/Gel-MA bio-resin is a promising material for biofabrication and provides important cues for the further development of lithography-based bioprinting of complex, free-form living tissue analogues.


Assuntos
Resinas Acrílicas/química , Bioimpressão/métodos , Técnicas de Cultura de Células/métodos , Alicerces Teciduais/química , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Gelatina/química , Humanos , Hidrogéis/química , Luz , Metacrilatos/química , Álcool de Polivinil/química , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA