Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 9(20): 6903-6914, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34522940

RESUMO

Abdominal aortic aneurysm (AAA) is associated with the loss of vascular smooth muscle cells (SMCs) within the vessel wall. Direct delivery of therapeutic cells is challenging due to impaired mechanical integrity of the vessel wall. We hypothesized that porous collagen scaffolds can be an effective vehicle for the delivery of human-derived SMCs to the site of AAA. The purpose was to evaluate if the delivery of cell-seeded scaffolds can abrogate progressive expansion in a mouse model of AAA. Collagen scaffolds seeded with either primary human aortic SMCs or induced pluripotent stem cell derived-smooth muscle progenitor cells (iPSC-SMPs) had >80% in vitro cell viability and >75% cell penetrance through the scaffold's depth, while preserving smooth muscle phenotype. The cell-seeded scaffolds were successfully transplanted onto the murine aneurysm peri-adventitia on day 7 following AAA induction using pancreatic porcine elastase infusion. Ultrasound imaging revealed that SMC-seeded scaffolds significantly reduced the aortic diameter by 28 days, compared to scaffolds seeded with iPSC-SMPs or without cells (acellular scaffold), respectively. Bioluminescence imaging demonstrated that both cell-seeded scaffold groups had cellular localization to the aneurysm but a decline in survival with time. Histological analysis revealed that both cell-seeded scaffold groups had more SMC retention and less macrophage invasion into the medial layer of AAA lesions, when compared to the acellular scaffold treatment group. Our data suggest that scaffold-based SMC delivery is feasible and may constitute a platform for cell-based AAA therapy.


Assuntos
Aneurisma da Aorta Abdominal , Túnica Adventícia , Animais , Aneurisma da Aorta Abdominal/terapia , Células Cultivadas , Colágeno , Camundongos , Miócitos de Músculo Liso , Porosidade , Suínos
2.
Biomater Sci ; 8(19): 5376-5389, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32996916

RESUMO

The regeneration of skeletal muscle can be permanently impaired by traumatic injuries, despite the high regenerative capacity of native muscle. An attractive therapeutic approach for treating severe muscle inuries is the implantation of off-the-shelf engineered biomimetic scaffolds into the site of tissue damage to enhance muscle regeneration. Anisotropic nanofibrillar scaffolds provide spatial patterning cues to create organized myofibers, and growth factors such as insulin-like growth factor-1 (IGF-1) are potent inducers of both muscle regeneration as well as angiogenesis. The aim of this study was to test the therapeutic efficacy of anisotropic IGF-1-releasing collagen scaffolds combined with voluntary exercise for the treatment of acute volumetric muscle loss, with a focus on histomorphological effects. To enhance the angiogenic and regenerative potential of injured murine skeletal muscle, IGF-1-laden nanofibrillar scaffolds with aligned topography were fabricated using a shear-mediated extrusion approach, followed by growth factor adsorption. Individual scaffolds released a cumulative total of 1244 ng ± 153 ng of IGF-1 over the course of 21 days in vitro. To test the bioactivity of IGF-1-releasing scaffolds, the myotube formation capacity of murine myoblasts was quantified. On IGF-1-releasing scaffolds seeded with myoblasts, the resulting myotubes formed were 1.5-fold longer in length and contained 2-fold greater nuclei per myotube, when compared to scaffolds without IGF-1. When implanted into the ablated murine tibialis anterior muscle, the IGF-1-laden scaffolds, in conjunction with voluntary wheel running, significantly increased the density of perfused microvessels by greater than 3-fold, in comparison to treatment with scaffolds without IGF-1. Enhanced myogenesis was also observed in animals treated with the IGF-1-laden scaffolds combined with exercise, compared to control scaffolds transplanted into mice that did not receive exercise. Furthermore, the abundance of mature neuromuscular junctions was greater by approximately 2-fold in muscles treated with IGF-1-laden scaffolds, when paired with exercise, in comparison to the same treatment without exercise. These findings demonstrate that voluntary exercise improves the regenerative effect of growth factor-laden scaffolds by augmenting neurovascular regeneration, and have important translational implications in the design of off-the-shelf therapeutics for the treatment of traumatic muscle injury.


Assuntos
Fator de Crescimento Insulin-Like I , Alicerces Teciduais , Animais , Camundongos , Atividade Motora , Fibras Musculares Esqueléticas , Músculo Esquelético , Regeneração Nervosa , Regeneração
3.
Artigo em Inglês | MEDLINE | ID: mdl-32766213

RESUMO

Cell therapy for treatment of peripheral arterial disease (PAD) is a promising approach but is limited by poor cell survival when cells are delivered using saline. The objective of this study was to examine the feasibility of aligned nanofibrillar scaffolds as a vehicle for the delivery of human stromal vascular fraction (SVF), and then to assess the efficacy of the cell-seeded scaffolds in a murine model of PAD. Flow cytometric analysis was performed to characterize the phenotype of SVF cells from freshly isolated lipoaspirate, as well as after attachment onto aligned nanofibrillar scaffolds. Flow cytometry results demonstrated that the SVF consisted of 33.1 ± 9.6% CD45+ cells, a small fraction of CD45-/CD31+ (4.5 ± 3.1%) and 45.4 ± 20.0% of CD45-/CD31-/CD34+ cells. Although the subpopulations of SVF did not change significantly after attachment to the aligned nanofibrillar scaffolds, protein secretion of vascular endothelial growth factor (VEGF) significantly increased by six-fold, compared to SVF cultured in suspension. Importantly, when SVF-seeded scaffolds were transplanted into immunodeficient mice with induced hindlimb ischemia, the cell-seeded scaffolds induced a significant higher mean perfusion ratio after 14 days, compared to cells delivered using saline. Together, these results show that aligned nanofibrillar scaffolds promoted cellular attachment, enhanced the secretion of VEGF from attached SVF cells, and their implantation with attached SVF cells stimulated blood perfusion recovery. These findings have important therapeutic implications for the treatment of PAD using SVF.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31552234

RESUMO

Tissue engineering approaches to regenerate myocardial tissue after disease or injury is promising. Integration with the host vasculature is critical to the survival and therapeutic efficacy of engineered myocardial tissues. To create more physiologically oriented engineered myocardial tissue with organized cellular arrangements and endothelial interactions, randomly oriented or parallel-aligned microfibrous polycaprolactone scaffolds were seeded with human pluripotent stem cell-derived cardiomyocytes (iCMs) and/or endothelial cells (iECs). The resultant engineered myocardial tissues were assessed in a subcutaneous transplantation model and in a myocardial injury model to evaluate the effect of scaffold anisotropy and endothelial interactions on vascular integration of the engineered myocardial tissue. Here we demonstrated that engineered myocardial tissue composed of randomly oriented scaffolds seeded with iECs promoted the survival of iECs for up to 14 days. However, engineered myocardial tissue composed of aligned scaffolds preferentially guided the organization of host capillaries along the direction of the microfibers. In a myocardial injury model, epicardially transplanted engineered myocardial tissues composed of randomly oriented scaffolds seeded with iCMs augmented microvessel formation leading to a significantly higher arteriole density after 4 weeks, compared to engineered tissues derived from aligned scaffolds. These findings that the scaffold microtopography imparts differential effect on revascularization, in which randomly oriented scaffolds promote pro-survival and pro-angiogenic effects, and aligned scaffolds direct the formation of anisotropic vessels. These findings suggest a dominant role of scaffold topography over endothelial co-culture in modulating cellular survival, vascularization, and microvessel architecture.

5.
Commun Biol ; 2: 170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31098403

RESUMO

Traumatic skeletal muscle injuries cause irreversible tissue damage and impaired revascularization. Engineered muscle is promising for enhancing tissue revascularization and regeneration in injured muscle. Here we fabricated engineered skeletal muscle composed of myotubes interspersed with vascular endothelial cells using spatially patterned scaffolds that induce aligned cellular organization, and then assessed their therapeutic benefit for treatment of murine volumetric muscle loss. Murine skeletal myoblasts co-cultured with endothelial cells in aligned nanofibrillar scaffolds form endothelialized and aligned muscle with longer myotubes, more synchronized contractility, and more abundant secretion of angiogenic cytokines, compared to endothelialized engineered muscle formed from randomly-oriented scaffolds. Treatment of traumatically injured muscle with endothelialized and aligned skeletal muscle promotes the formation of highly organized myofibers and microvasculature, along with greater vascular perfusion, compared to treatment of muscle derived from randomly-oriented scaffolds. This work demonstrates the potential of endothelialized and aligned engineered skeletal muscle to promote vascular regeneration following transplantation.


Assuntos
Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/lesões , Engenharia Tecidual/métodos , Animais , Linhagem Celular , Técnicas de Cocultura , Citocinas/biossíntese , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Humanos , Camundongos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/citologia , Nanofibras/ultraestrutura , Regeneração/fisiologia , Alicerces Teciduais
6.
Tissue Eng Part A ; 25(1-2): 121-130, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717619

RESUMO

RNA-based vector delivery is a promising gene therapy approach. Recent advances in chemical modification of mRNA structure to form modified mRNA (mmRNA or cmRNA or modRNA) have substantially improved their stability and translational efficiency within cells. However, mmRNA conventionally delivered in solution can be taken up nonspecifically or become cleared away prematurely, which markedly limits the potential benefit of mmRNA therapy. To address this limitation, we developed mmRNA-incorporated nanofibrillar scaffolds that could target spatially localized delivery and temporally controlled release of the mmRNA both in vitro and in vivo. To establish the efficacy of mmRNA therapy, mmRNA encoding reporter proteins such as green fluorescence protein or firefly luciferase (Fluc) was loaded into aligned nanofibrillar collagen scaffolds. The mmRNA was released from mmRNA-loaded scaffolds in a transient and temporally controlled manner and induced transfection of human fibroblasts in a dose-dependent manner. In vitro transfection was further verified using mmRNA encoding the angiogenic growth factor, hepatocyte growth factor (HGF). Finally, scaffold-based delivery of HGF mmRNA to the site of surgically induced muscle injury in mice resulted in significantly higher vascular regeneration after 14 days, compared to implantation of Fluc mmRNA-releasing scaffolds. After transfection with Fluc mmRNA-releasing scaffold in vivo, Fluc activity was detectable and localized to the muscle region, based on noninvasive bioluminescence imaging. Scaffold-based local mmRNA delivery as an off-the-shelf form of gene therapy has broad translatability for treating a wide range of diseases or injuries.


Assuntos
Colágeno , Fator de Crescimento de Hepatócito , Nanofibras/química , RNA Mensageiro , Transfecção/métodos , Linhagem Celular , Colágeno/química , Colágeno/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Fator de Crescimento de Hepatócito/biossíntese , Fator de Crescimento de Hepatócito/genética , Humanos , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia
7.
J Am Heart Assoc ; 7(18): e009234, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30371212

RESUMO

Background CEP (ω-[2-carboxyethyl]pyrrole) protein adducts are the end products of lipid oxidation associated with inflammation and have been implicated in the induction of angiogenesis in pathological conditions such as tissue ischemia. We synthesized small molecules derived from CEP protein adducts and evaluated the angiogenic effect of the CEP analog CEP 03 in the setting of peripheral arterial disease. Methods and Results The angiogenic effect of CEP 03 was assessed by in vitro analysis of primary human microvascular endothelial cell proliferation and tubelike formation in Matrigel (Corning). In the presence of CEP 03, proliferation of endothelial cells in vitro increased by 27±18% under hypoxic (1% O2) conditions, reaching similar levels to that of VEGF A (vascular endothelial growth factor A) stimulation (22±10%), relative to the vehicle control treatment. A similar effect of CEP 03 was demonstrated in the increased number of tubelike branches in Matrigel, reaching >70% induction in hypoxia, compared with the vehicle control. The therapeutic potential of CEP 03 was further evaluated in a mouse model of peripheral arterial disease by quantification of blood perfusion recovery and capillary density. In the ischemic hind limb, treatment of CEP 03 encapsulated within Matrigel significantly enhanced blood perfusion by 2-fold after 14 days compared with those treated with Matrigel alone. Moreover, these results concurred with histological finding that treatment of CEP 03 in Matrigel resulted in a significant increase in microvessel density compared with Matrigel alone. Conclusions Our data suggest that CEP 03 has a profound positive effect on angiogenesis and neovessel formation and thus has therapeutic potential for treatment of peripheral arterial disease.


Assuntos
Endotélio Vascular/patologia , Membro Posterior/irrigação sanguínea , Doença Arterial Periférica/tratamento farmacológico , Pirróis/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/prevenção & controle , Doença Arterial Periférica/patologia
8.
NPJ Regen Med ; 3: 16, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245849

RESUMO

Muscle regeneration can be permanently impaired by traumatic injuries, despite the high regenerative capacity of skeletal muscle. Implantation of engineered biomimetic scaffolds to the site of muscle ablation may serve as an attractive off-the-shelf therapeutic approach. The objective of the study was to histologically assess the therapeutic benefit of a three-dimensional spatially patterned collagen scaffold, in conjunction with rehabilitative exercise, for treatment of volumetric muscle loss. To mimic the physiologic organization of skeletal muscle, which is generally composed of myofibers aligned in parallel, three-dimensional parallel-aligned nanofibrillar collagen scaffolds were fabricated. When implanted into the ablated murine tibialis anterior muscle, the aligned nanofibrillar scaffolds, in conjunction with voluntary caged wheel exercise, significantly improved the density of perfused microvessels, in comparison to treatments of the randomly oriented nanofibrillar scaffold, decellularized scaffold, or in the untreated control group. The abundance of neuromuscular junctions was 19-fold higher when treated with aligned nanofibrillar scaffolds in conjunction with exercise, in comparison to treatment of aligned scaffold without exercise. Although, the density of de novo myofibers was not significantly improved by aligned scaffolds, regardless of exercise activity, the cross-sectional area of regenerating myofibers was increased by > 60% when treated with either aligned and randomly oriented scaffolds, in comparison to treatment of decellularized scaffold or untreated controls. These findings demonstrate that voluntary exercise improved the regenerative effect of aligned scaffolds by augmenting neurovascularization, and have important implications in the design of engineered biomimetic scaffolds for treatment of traumatic muscle injury.

9.
Biomater Sci ; 6(3): 614-622, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29406542

RESUMO

A key feature of peripheral arterial disease (PAD) is damage to endothelial cells (ECs), resulting in lower limb pain and restricted blood flow. Recent preclinical studies demonstrate that the transplantation of ECs via direct injection into the affected limb can result in significantly improved blood circulation. Unfortunately, the clinical application of this therapy has been limited by low cell viability and poor cell function. To address these limitations we have developed an injectable, recombinant hydrogel, termed SHIELD (Shear-thinning Hydrogel for Injectable Encapsulation and Long-term Delivery) for cell transplantation. SHIELD provides mechanical protection from cell membrane damage during syringe flow. Additionally, secondary in situ crosslinking provides a reinforcing network to improve cell retention, thereby augmenting the therapeutic benefit of cell therapy. In this study, we demonstrate the improved acute viability of human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) following syringe injection delivery in SHIELD, compared to saline. Using a murine hind limb ischemia model of PAD, we demonstrate enhanced iPSC-EC retention in vivo and improved neovascularization of the ischemic limb based on arteriogenesis following transplantation of iPSC-ECs delivered in SHIELD.


Assuntos
Células Endoteliais/transplante , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/transplante , Doença Arterial Periférica/terapia , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Células Endoteliais/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos Endogâmicos NOD , Camundongos SCID
10.
Adv Funct Mater ; 28(36)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31327961

RESUMO

Real-time optical imaging is a promising approach for visualizing in vivo hemodynamics and vascular structure in mice with experimentally induced peripheral arterial disease (PAD). We report the application of a novel fluorescence-based all-optical imaging approach in the near-infrared IIb (NIR-IIb, 1500-1700 nm emission) window, for imaging hindlimb microvasculature and blood perfusion in a mouse model of PAD. In phantom studies, lead sulfide/cadmium sulfide (PbS/CdS) quantum dots showed better retention of image clarity, in comparison with single-walled nanotube (SWNT) NIR-IIa (1000-1400nm) dye, at varying depths of penetration. When systemically injected to mice, PbS/CdS demonstrated improved clarity of the vasculature, compared to SWNTs, as well as higher spatial resolution than in vivo microscopic computed tomography. In a mouse model of PAD, NIR-IIb imaging of the ischemic hindlimb vasculature showed significant improvement in blood perfusion over the course of 10 days (P<0.05), as well as a significant increase in microvascular density over the first 7 days after induction of PAD. In conclusion, NIR-IIb imaging of PbS/CdS vascular contrast agent is a useful multi-functional imaging approach for high spatial resolution imaging of the microvasculature and quantification of blood perfusion recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA