Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2316500121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442157

RESUMO

Evaluating the ability of cytotoxic T lymphocytes (CTLs) to eliminate tumor cells is crucial, for instance, to predict the efficiency of cell therapy in personalized medicine. However, the destruction of a tumor by CTLs involves CTL migration in the extra-tumoral environment, accumulation on the tumor, antigen recognition, and cooperation in killing the cancer cells. Therefore, identifying the limiting steps in this complex process requires spatio-temporal measurements of different cellular events over long periods. Here, we use a cancer-on-a-chip platform to evaluate the impact of adenomatous polyposis coli (APC) mutation on CTL migration and cytotoxicity against 3D tumor spheroids. The APC mutated CTLs are found to have a reduced ability to destroy tumor spheroids compared with control cells, even though APC mutants migrate in the extra-tumoral space and accumulate on the spheroids as efficiently as control cells. Once in contact with the tumor however, mutated CTLs display reduced engagement with the cancer cells, as measured by a metric that distinguishes different modes of CTL migration. Realigning the CTL trajectories around localized killing cascades reveals that all CTLs transition to high engagement in the 2 h preceding the cascades, which confirms that the low engagement is the cause of reduced cytotoxicity. Beyond the study of APC mutations, this platform offers a robust way to compare cytotoxic cell efficiency of even closely related cell types, by relying on a multiscale cytometry approach to disentangle complex interactions and to identify the steps that limit the tumor destruction.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias , Humanos , Neoplasias/genética , Linfócitos T Citotóxicos , Mutação , Dispositivos Lab-On-A-Chip
2.
Front Immunol ; 14: 1163466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533857

RESUMO

Familial adenomatous polyposis (FAP) is an inherited disease characterized by the development of large number of colorectal adenomas with high risk of evolving into colorectal tumors. Mutations of the Adenomatous polyposis coli (APC) gene is often at the origin of this disease, as well as of a high percentage of spontaneous colorectal tumors. APC is therefore considered a tumor suppressor gene. While the role of APC in intestinal epithelium homeostasis is well characterized, its importance in immune responses remains ill defined. Our recent work indicates that the APC protein is involved in various phases of both CD4 and CD8 T cells responses. This prompted us to investigate an array of immune cell features in FAP subjects carrying APC mutations. A group of 12 FAP subjects and age and sex-matched healthy controls were studied. We characterized the immune cell repertoire in peripheral blood and the capacity of immune cells to respond ex vivo to different stimuli either in whole blood or in purified T cells. A variety of experimental approaches were used, including, pultiparamater flow cytometry, NanosString gene expression profiling, Multiplex and regular ELISA, confocal microscopy and computer-based image analyis methods. We found that the percentage of several T and natural killer (NK) cell populations, the expression of several genes induced upon innate or adaptive immune stimulation and the production of several cytokines and chemokines was different. Moreover, the capacity of T cells to migrate in response to chemokine was consistently altered. Finally, immunological synapses between FAP cytotoxic T cells and tumor target cells were more poorly structured. Our findings of this pilot study suggest that mild but multiple immune cell dysfunctions, together with intestinal epithelial dysplasia in FAP subjects, may facilitate the long-term polyposis and colorectal tumor development. Although at an initial discovery phase due to the limited sample size of this rare disease cohort, our findings open new perspectives to consider immune cell abnormalities into polyposis pathology.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais , Linfócitos T , Humanos , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Movimento Celular/genética , Neoplasias Colorretais/genética , Genes APC , Mutação , Projetos Piloto , Linfócitos T/imunologia
3.
Methods Mol Biol ; 2654: 169-199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106183

RESUMO

We describe microvillar cartography (MC), a method to map proteins on cellular surfaces with respect to the membrane topography. The surfaces of many cells are not smooth, but are rather covered with various protrusions such as microvilli. These protrusions may play key roles in multiple cellular functions, due to their ability to control the distribution of specific protein assemblies on the cell surface. Thus, for example, we have shown that the T-cell receptor and several of its proximal signaling proteins reside on microvilli, while others are excluded from these projections. These results have indicated that microvilli can function as key signaling hubs for the initiation of the immune response. MC has facilitated our observations of particular surface proteins and their specialized distribution on microvillar and non-microvillar compartments. MC combines membrane topography imaging, using variable-angle total internal microscopy, with stochastic localization nanoscopy, which generates deep sub-diffraction maps of protein distribution. Since the method is based on light microscopy, it avoids some of the pitfalls inherent to electron-microscopy-based techniques, such as dehydration, the need for carbon coating, and immunogold clustering, and is amenable to future developments involving, for example, live-cell imaging. This protocol details the procedures we developed for MC, which can be readily adopted to study a broad range of cell-surface molecules and dissect their distribution within distinct surface assemblies under multiple cell activation states.


Assuntos
Proteínas de Membrana , Imagem Individual de Molécula , Membrana Celular , Transdução de Sinais , Microscopia Eletrônica
4.
Methods Cell Biol ; 173: 1-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653077

RESUMO

Immunological synapse formation results from a profound T cell polarization process that involves the coordinated action of the actin and microtubule cytoskeleton, and the intracellular traffic of several vesicular organelles. T cell polarization is key for both T cell activation leading to T cell proliferation and differentiation, and for T cell effector functions such as polarized secretion of cytokines by helper T cells, or polarized delivery of lytic granules by cytotoxic T cells. Efficient targeting of lytic granules by cytotoxic T cells is a crucial event for the control and elimination of infected or tumor cells. Understanding how lytic granule delivery is regulated and quantifying its efficiency under physiological and pathological conditions may help to improve immune responses against infection and cancer.


Assuntos
Sinapses Imunológicas , Linfócitos T Citotóxicos , Microscopia , Grânulos Citoplasmáticos , Citoesqueleto , Polaridade Celular
5.
Sci Adv ; 8(15): eabl5942, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417240

RESUMO

Adenomatous polyposis coli (APC) is a tumor suppressor whose mutations underlie familial adenomatous polyposis (FAP) and colorectal cancer. Although its role in intestinal epithelial cells is well characterized, APC importance in T cell biology is ill defined. APC regulates cytoskeleton organization, cell polarity, and migration in various cell types. Here, we address whether APC plays a role in T lymphocyte migration. Using a series of cell biology tools, we unveiled that T cells from FAP patients carrying APC mutations display impaired adhesion and motility in constrained environments. We further dissected the cellular mechanisms underpinning these defects in APC-depleted CEM T cell line that recapitulate the phenotype observed in FAP T cells. We found that APC affects T cell motility by modulating integrin-dependent adhesion and cytoskeleton reorganization. Hence, APC mutations in FAP patients not only drive intestinal neoplasms but also impair T cell migration, potentially contributing to inefficient antitumor immunity.


Assuntos
Proteína da Polipose Adenomatosa do Colo , Polipose Adenomatosa do Colo , Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/genética , Movimento Celular , Humanos , Mutação , Fenótipo
6.
Biomed J ; 45(2): 299-309, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34626864

RESUMO

Cell polarity regulators are ubiquitous, evolutionary conserved multifunctional proteins. They contain a variety of protein-protein interaction domains endowing them the capacity to interact with cytoskeleton structures, membrane components and multiple regulatory proteins. In this way, they act in complexes and are pivotal for cell growth and differentiation, tissue formation, stability and turnover, cell migration, wound healing, and others. Hence some of these proteins are tumor suppressors. These cellular processes rely on the establishment of cell polarity characterized by the asymmetric localization of proteins, RNAs, membrane domains, or organelles that together condition cell shape and function. Whether apparently stable, as in epithelia or neurons, or very dynamic, as in immune cells, cell polarity is an active process. It involves cytoskeleton reorganization and targeted intracellular traffic, and results in cellular events such as protein synthesis, secretion and assembly taking place at defined cell poles. Multiple polarity regulators orchestrate these processes. Immune cells are particularly versatile in rapidly polarizing and assuming different shapes, so to swiftly adopt specialized behaviors and functions. Polarity regulators act in various ways in different immune cell types and at their distinct differentiation states. Here we review how cell polarity regulators control different processes and functions along T lymphocyte physiology, including cell migration through different tissues, immunological synapse formation and effector functions.


Assuntos
Polaridade Celular , Ativação Linfocitária , Movimento Celular , Citoesqueleto/metabolismo , Humanos , Linfócitos T
7.
Front Immunol ; 12: 814570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095913

RESUMO

Sorting nexin 27 (SNX27) association to the retromer complex mediates intracellular trafficking of cargoes containing PSD95/Dlg1/ZO-1 (PDZ)-binding C-terminal sequences from endosomes to the cell surface, preventing their lysosomal degradation. Antigen recognition by T lymphocyte leads to the formation of a highly organized structure named the immune synapse (IS), which ensures cell-cell communication and sustained T cell activation. At the neuronal synapse, SNX27 recycles PDZ-binding receptors and its defective expression is associated with synaptic dysfunction and cognitive impairment. In T lymphocytes, SNX27 was found localized at recycling endosomal compartments that polarized to the IS, suggesting a function in polarized traffic to this structure. Proteomic analysis of PDZ-SNX27 interactors during IS formation identify proteins with known functions in cytoskeletal reorganization and lipid regulation, such as diacylglycerol (DAG) kinase (DGK) ζ, as well as components of the retromer and WASH complex. In this study, we investigated the consequences of SNX27 deficiency in cytoskeletal reorganization during IS formation. Our analyses demonstrate that SNX27 controls the polarization towards the cell-cell interface of the PDZ-interacting cargoes DGKζ and the retromer subunit vacuolar protein sorting protein 26, among others. SNX27 silencing abolishes the formation of a DAG gradient at the IS and prevents re-localization of the dynactin complex component dynactin-1/p150Glued, two events that correlate with impaired microtubule organizing center translocation (MTOC). SNX27 silenced cells show marked alteration in cytoskeleton organization including a failure in the organization of the microtubule network and defects in actin clearance at the IS. Reduced SNX27 expression was also found to hinder the arrangement of signaling microclusters at the IS, as well as the polarization of the secretory machinery towards the antigen presenting cells. Our results broaden the knowledge of SNX27 function in T lymphocytes by showing a function in modulating IS organization through regulated trafficking of cargoes.


Assuntos
Sinapses Imunológicas/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Via Secretória , Nexinas de Classificação/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Citocinas/biossíntese , Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Modelos Biológicos , Biossíntese de Proteínas , Transdução de Sinais , Nexinas de Classificação/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
Front Cell Dev Biol ; 8: 591348, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195256

RESUMO

Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.

9.
Immunohorizons ; 4(6): 363-381, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581014

RESUMO

Adenomatous polyposis coli (Apc) is a cell polarity regulator and a tumor suppressor associated with familial adenomatous polyposis and colorectal cancer. Apc involvement in T lymphocyte functions and antitumor immunity remains poorly understood. Investigating Apc-depleted human CD8 T cells and CD8 T cells from ApcMin/+ mutant mice, we found that Apc regulates actin and microtubule cytoskeleton remodeling at the immunological synapse, controlling synapse morphology and stability and lytic granule dynamics, including targeting and fusion at the synapse. Ultimately, Apc tunes cytotoxic T cell activity, leading to tumor cell killing. Furthermore, Apc modulates early TCR signaling and nuclear translocation of the NFAT transcription factor with mild consequences on the expression of some differentiation markers. In contrast, no differences in the production of effector cytokines were observed. These results, together with our previous findings on Apc function in regulatory T cells, indicate that Apc mutations may cause a dual damage, first unbalancing epithelial cell differentiation and growth driving epithelial neoplasms and, second, impairing T cell-mediated antitumor immunity at several levels.


Assuntos
Actinas/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Sinapses Imunológicas/metabolismo , Microtúbulos/imunologia , Fatores de Transcrição NFATC/genética , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/imunologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microtúbulos/ultraestrutura , Mutação , Fatores de Transcrição NFATC/imunologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
10.
Cell Rep ; 30(10): 3434-3447.e6, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160548

RESUMO

T cell surfaces are covered with microvilli, actin-rich and flexible protrusions. We use super-resolution microscopy to show that ≥90% of T cell receptor (TCR) complex molecules TCRαß and TCRζ, as well as the co-receptor CD4 (cluster of differentiation 4) and the co-stimulatory molecule CD2, reside on microvilli of resting human T cells. Furthermore, TCR proximal signaling molecules involved in the initial stages of the immune response, including the protein tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase) and the key adaptor LAT (linker for activation of T cells), are also enriched on microvilli. Notably, phosphorylated proteins of the ERM (ezrin, radixin, and moesin) family colocalize with TCRαß as well as with actin filaments, implying a role for one or more ERMs in linking the TCR complex to the actin cytoskeleton within microvilli. Our results establish microvilli as key signaling hubs, in which the TCR complex and its proximal signaling molecules and adaptors are preassembled prior to activation in an ERM-dependent manner, facilitating initial antigen sensing.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microvilosidades/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Actinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Células Jurkat , Microvilosidades/ultraestrutura , Nanotecnologia
11.
J Immunol ; 201(9): 2624-2640, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30282749

RESUMO

Endosomal traffic of TCR and signaling molecules regulates immunological synapse formation and T cell activation. We recently showed that Rab11 endosomes regulate the subcellular localization of the tyrosine kinase Lck and of the GTPase Rac1 and control their functions in TCR signaling and actin cytoskeleton remodeling. HIV-1 infection of T cells alters their endosomal traffic, activation capacity, and actin cytoskeleton organization. The viral protein Nef is pivotal for these modifications. We hypothesized that HIV-1 Nef could jointly alter Lck and Rac1 endosomal traffic and concomitantly modulate their functions. In this study, we show that HIV-1 infection of human T cells sequesters both Lck and Rac1 in a pericentrosomal compartment in an Nef-dependent manner. Strikingly, the Nef-induced Lck compartment contains signaling-competent forms (phosphorylated on key Tyr residues) of Lck and some of its downstream effectors, TCRζ, ZAP70, SLP76, and Vav1, avoiding the proximal LAT adaptor. Importantly, Nef-induced concentration of signaling molecules was concomitant with the upregulation of several early and late T cell activation genes. Moreover, preventing the concentration of the Nef-induced Lck compartment by depleting the Rab11 effector FIP3 counteracted Nef-induced gene expression upregulation. In addition, Nef extensively sequesters Rac1 and downregulates Rac1-dependent actin cytoskeleton remodeling, thus reducing T cell spreading. Therefore, by modifying their endosomal traffic, Nef hijacks signaling and actin cytoskeleton regulators to dually modulate their functional outputs. Our data shed new light into the molecular mechanisms that modify T cell physiology during HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/imunologia , Citoesqueleto de Actina/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Endossomos/virologia , Infecções por HIV/metabolismo , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Transporte Proteico/imunologia , Transdução de Sinais/imunologia , Proteínas rac1 de Ligação ao GTP/imunologia
12.
Small GTPases ; 9(4): 310-315, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27533792

RESUMO

Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.


Assuntos
Forma Celular , Endossomos/metabolismo , Quinase I-kappa B/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Humanos
13.
Annu Rev Immunol ; 36: 103-125, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29261409

RESUMO

T cell receptors (TCRs) are protein complexes formed by six different polypeptides. In most T cells, TCRs are composed of αß subunits displaying immunoglobulin-like variable domains that recognize peptide antigens associated with major histocompatibility complex molecules expressed on the surface of antigen-presenting cells. TCRαß subunits are associated with the CD3 complex formed by the γ, δ, ε, and ζ subunits, which are invariable and ensure signal transduction. Here, we review how the expression and function of TCR complexes are orchestrated by several fine-tuned cellular processes that encompass (a) synthesis of the subunits and their correct assembly and expression at the plasma membrane as a single functional complex, (b) TCR membrane localization and dynamics at the plasma membrane and in endosomal compartments, (c) TCR signal transduction leading to T cell activation, and (d) TCR degradation. These processes balance each other to ensure efficient T cell responses to a variety of antigenic stimuli while preventing autoimmunity.


Assuntos
Regulação da Expressão Gênica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Complexo CD3/genética , Complexo CD3/metabolismo , Membrana Celular/metabolismo , Endocitose/genética , Endocitose/imunologia , Endossomos/metabolismo , Humanos , Imunomodulação , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteólise , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Relação Estrutura-Atividade
14.
Cell Rep ; 21(1): 181-194, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978472

RESUMO

Adenomatous polyposis coli (APC) is a polarity regulator and tumor suppressor associated with familial adenomatous polyposis and colorectal cancer development. Although extensively studied in epithelial transformation, the effect of APC on T lymphocyte activation remains poorly defined. We found that APC ensures T cell receptor-triggered activation through Nuclear Factor of Activated T cells (NFAT), since APC is necessary for NFAT's nuclear localization in a microtubule-dependent fashion and for NFAT-driven transcription leading to cytokine gene expression. Interestingly, NFAT forms clusters juxtaposed with microtubules. Ultimately, mouse Apc deficiency reduces the presence of NFAT in the nucleus of intestinal regulatory T cells (Tregs) and impairs Treg differentiation and the acquisition of a suppressive phenotype, which is characterized by the production of the anti-inflammatory cytokine IL-10. These findings suggest a dual role for APC mutations in colorectal cancer development, where mutations drive the initiation of epithelial neoplasms and also reduce Treg-mediated suppression of the detrimental inflammation that enhances cancer growth.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Regulação Neoplásica da Expressão Gênica , Microtúbulos/imunologia , Fatores de Transcrição NFATC/genética , Linfócitos T Reguladores/imunologia , Polipose Adenomatosa do Colo/imunologia , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Proteína da Polipose Adenomatosa do Colo/imunologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Células HCT116 , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Células Jurkat , Linfonodos/imunologia , Linfonodos/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microtúbulos/ultraestrutura , Fatores de Transcrição NFATC/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/patologia
15.
Methods Mol Biol ; 1584: 129-142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255700

RESUMO

Immunological synapse formation is the result of a profound T cell polarization process that involves the coordinated action of the actin and microtubule cytoskeleton, as well as intracellular vesicle traffic. Endosomal vesicle traffic ensures the targeting of the T cell receptor (TCR) and various signaling molecules to the synapse, being necessary for the generation of signaling complexes downstream of the TCR. Here we describe the microscopy imaging methods that we currently use to unveil how TCR and signaling molecules are associated with endosomal compartments and deliver their cargo to the immunological synapse.


Assuntos
Vesículas Citoplasmáticas/imunologia , Endossomos/imunologia , Sinapses Imunológicas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Transporte Biológico Ativo/imunologia , Humanos , Células Jurkat , Camundongos
16.
Methods Mol Biol ; 1584: 545-557, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255725

RESUMO

T cells are the main cellular targets of the human immunodeficiency virus 1 (HIV-1). HIV-1 infection induces pleiotropic effects on the infected T cell that modify the T cell capacity to respond to antigen and facilitates virus replication. HIV-1 infection subverts the formation and function of the immunological synapse altering both actin cytoskeleton remodeling and intracellular vesicle traffic. We describe here our methods to unveil how HIV-1 and in particular its protein Nef modify vesicle traffic to the immunological synapse, perturbing the synapse activation capacity.


Assuntos
Antígenos HIV/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Sinapses Imunológicas/imunologia , Replicação Viral/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Infecções por HIV/patologia , Humanos , Sinapses Imunológicas/patologia , Células Jurkat
17.
J Immunol ; 198(7): 2967-2978, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235866

RESUMO

The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production.


Assuntos
Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Western Blotting , Endossomos/imunologia , Técnicas de Silenciamento de Genes , Humanos , Quinase I-kappa B/imunologia , Sinapses Imunológicas/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Microscopia Confocal , Reação em Cadeia da Polimerase , Transporte Proteico/imunologia , Proteínas rab de Ligação ao GTP/imunologia
18.
PLoS One ; 12(1): e0170396, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107427

RESUMO

The adapter protein SLP76 is a key orchestrator of T cell receptor (TCR) signal transduction. We previously identified a negative feedback loop that modulates T cell activation, involving phosphorylation of Ser376 of SLP76 by the hematopoietic progenitor kinase 1 (HPK1). However, the physiological relevance of this regulatory mechanism was still unknown. To address this question, we generated a SLP76-S376A-expressing knock-in mouse strain and investigated the effects of Ser376 mutation on T cell development and function. We report here that SLP76-S376A-expressing mice exhibit normal thymocyte development and no detectable phenotypic alterations in mature T cell subsets or other lymphoid and myeloid cell lineages. Biochemical analyses revealed that mutant T cells were hypersensitive to TCR stimulation. Indeed, phosphorylation of several signaling proteins, including SLP76 itself, phospholipase Cγ1 and the protein kinases AKT and ERK1/2, was increased. These modifications correlated with increased Th1-type and decreased Th2-type cytokine production by SLP76-S376A T cells, but did not result in significant changes of proliferative capacity nor activation-induced cell death susceptibility. Hence, our results reveal that SLP76-Ser376 phosphorylation does not mediate all HPK1-dependent regulatory effects in T cells but it fine-tunes helper T cell responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Serina/metabolismo , Linfócitos T/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Transdução de Sinais
19.
EMBO J ; 35(11): 1160-74, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27154205

RESUMO

The immunological synapse generation and function is the result of a T-cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11-positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1-dependent manner, key morphological events, like T-cell spreading and synapse symmetry. Finally, Rab11-/FIP3-mediated regulation is necessary for T-cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T-cell activation.


Assuntos
Actinas/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Quinase I-kappa B/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Linhagem Celular , Células Cultivadas , Endossomos/metabolismo , Humanos , Quinase I-kappa B/genética , Sinapses Imunológicas/metabolismo , Interleucina-2/metabolismo , Células Jurkat , RNA Interferente Pequeno/genética
20.
Front Immunol ; 7: 18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858721

RESUMO

The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of "phagocytic synapse." Here, we discuss both types of structures, their organization, and the mechanisms by which they are generated and regulated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA