RESUMO
Parkinson's disease (PD) is a neurological condition that is chronic and worsens over time, which presents a challenging diagnosis. An accurate diagnosis is required to recognize PD patients from healthy individuals. Diagnosing PD at early stages can reduce the severity of this disorder and improve the patient's living conditions. Algorithms based on associative memory (AM) have been applied in PD diagnosis using voice samples of patients with this health condition. Even though AM models have achieved competitive results in PD classification, they do not have any embedded component in the AM model that can identify and remove irrelevant features, which would consequently improve the classification performance. In this paper, we present an improvement to the smallest normalized difference associative memory (SNDAM) algorithm by means of a learning reinforcement phase that improves classification performance of SNDAM when it is applied to PD diagnosis. For the experimental phase, two datasets that have been widely applied for PD diagnosis were used. Both datasets were gathered from voice samples from healthy people and from patients who suffer from this condition at an early stage of PD. These datasets are publicly accessible in the UCI Machine Learning Repository. The efficiency of the ISNDAM model was contrasted with that of seventy other models implemented in the WEKA workbench and was compared to the performance of previous studies. A statistical significance analysis was performed to verify that the performance differences between the compared models were statistically significant. The experimental findings allow us to affirm that the proposed improvement in the SNDAM algorithm, called ISNDAM, effectively increases the classification performance compared against well-known algorithms. ISNDAM achieves a classification accuracy of 99.48%, followed by ANN Levenberg-Marquardt with 95.89% and SVM RBF kernel with 88.21%, using Dataset 1. ISNDAM achieves a classification accuracy of 99.66%, followed by SVM IMF1 with 96.54% and RF IMF1 with 94.89%, using Dataset 2. The experimental findings show that ISNDAM achieves competitive performance on both datasets and that statistical significance tests confirm that ISNDAM delivers classification performance equivalent to that of models published in previous studies.
RESUMO
Interactive technologies such as augmented reality have grown in popularity, but specialized sensors and high computer power must be used to perceive and analyze the environment in order to obtain an immersive experience in real time. However, these kinds of implementations have high costs. On the other hand, machine learning has helped create alternative solutions for reducing costs, but it is limited to particular solutions because the creation of datasets is complicated. Due to this problem, this work suggests an alternate strategy for dealing with limited information: unpaired samples from known and unknown surroundings are used to generate a path on embedded devices, such as smartphones, in real time. This strategy creates a path that avoids virtual elements through physical objects. The authors suggest an architecture for creating a path using imperfect knowledge. Additionally, an augmented reality experience is used to describe the generated path, and some users tested the proposal to evaluate the performance. Finally, the primary contribution is the approximation of a path produced from a known environment by using an unpaired dataset.
Assuntos
Realidade Aumentada , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , SmartphoneRESUMO
Increasingly, robotic systems require a level of perception of the scenario to interact in real-time, but they also require specialized equipment such as sensors to reach high performance standards adequately. Therefore, it is essential to explore alternatives to reduce the costs for these systems. For example, a common problem attempted by intelligent robotic systems is path planning. This problem contains different subsystems such as perception, location, control, and planning, and demands a quick response time. Consequently, the design of the solutions is limited and requires specialized elements, increasing the cost and time development. Secondly, virtual reality is employed to train and evaluate algorithms, generating virtual data. For this reason, the virtual dataset can be connected with the authentic world through Generative Adversarial Networks (GANs), reducing time development and employing limited samples of the physical world. To describe the performance, metadata information details the properties of the agents in an environment. The metadata approach is tested with an augmented reality system and a micro aerial vehicle (MAV), where both systems are executed in an authentic environment and implemented in embedded devices. This development helps to guide alternatives to reduce resources and costs, but external factors limit these implementations, such as the illumination variation, because the system depends on only a conventional camera.
Assuntos
Realidade Aumentada , Realidade Virtual , Algoritmos , MetadadosRESUMO
The efficient speed regulation of four-bar mechanisms is required for many industrial processes. These mechanisms are hard to control due to the highly nonlinear behavior and the presence of uncertainties or disturbances. In this paper, different Pareto-front approximation search approaches in the adaptive controller tuning based on online multiobjective metaheuristic optimization are studied through their application in the four-bar mechanism speed regulation problem. Dominance-based, decomposition-based, metric-driven, and hybrid search approaches included in the algorithms, such as nondominated sorting genetic algorithm II, multiobjective evolutionary algorithm based on decomposition and differential evolution, S-metric selection evolutionary multiobjective algorithm, and nondominated sorting genetic algorithm III, respectively, are considered in this paper. Also, a proposed metric-driven algorithm based on the differential evolution and the hypervolume indicator (HV-MODE) is incorporated into the analysis. The comparative descriptive and nonparametric statistical evidence presented in this paper shows the effectiveness of the adaptive controller tuning based on online multiobjective metaheuristic optimization and reveals the advantages of the metric-driven search approach.
RESUMO
Classification of electromyographic signals has a wide range of applications, from clinical diagnosis of different muscular diseases to biomedical engineering, where their use as input for the control of prosthetic devices has become a hot topic of research. The challenge of classifying these signals relies on the accuracy of the proposed algorithm and the possibility of its implementation in hardware. This paper considers the problem of electromyography signal classification, solved with the proposed signal processing and feature extraction stages, with the focus lying on the signal model and time domain characteristics for better classification accuracy. The proposal considers a simple preprocessing technique that produces signals suitable for feature extraction and the Burg reflection coefficients to form learning and classification patterns. These coefficients yield a competitive classification rate compared to the time domain features used. Sometimes, the feature extraction from electromyographic signals has shown that the procedure can omit less useful traits for machine learning models. Using feature selection algorithms provides a higher classification performance with as few traits as possible. The algorithms achieved a high classification rate up to 100% with low pattern dimensionality, with other kinds of uncorrelated attributes for hand movement identification.
RESUMO
The rapid proliferation of connectivity, availability of ubiquitous computing, miniaturization of sensors and communication technology, have changed healthcare in all its areas, creating the well-known healthcare paradigm of e-Health. In this paper, an embedded system capable of monitoring, learning and classifying biometric signals is presented. The machine learning model is based on associative memories to predict the presence or absence of coronary artery disease in patients. Classification accuracy, sensitivity and specificity results show that the performance of our proposal exceeds the performance achieved by each of the fifty widely known algorithms against which it was compared.
Assuntos
Algoritmos , Biometria/métodos , Tomada de Decisão Clínica , Doença da Artéria Coronariana/diagnóstico , Aprendizado de Máquina , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Sensibilidade e EspecificidadeRESUMO
Classification is one of the key issues in medical diagnosis. In this paper, a novel approach to perform pattern classification tasks is presented. This model is called Associative Memory based Classifier (AMBC). Throughout the experimental phase, the proposed algorithm is applied to help diagnose diseases; particularly, it is applied in the diagnosis of seven different problems in the medical field. The performance of the proposed model is validated by comparing classification accuracy of AMBC against the performance achieved by other twenty well known algorithms. Experimental results have shown that AMBC achieved the best performance in three of the seven pattern classification problems in the medical field. Similarly, it should be noted that our proposal achieved the best classification accuracy averaged over all datasets.