Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 912, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177637

RESUMO

To program intercellular communication for biomedicine, it is crucial to regulate the secretion and surface display of signaling proteins. If such regulations are at the protein level, there are additional advantages, including compact delivery and direct interactions with endogenous signaling pathways. Here we create a modular, generalizable design called Retained Endoplasmic Cleavable Secretion (RELEASE), with engineered proteins retained in the endoplasmic reticulum and displayed/secreted in response to specific proteases. The design allows functional regulation of multiple synthetic and natural proteins by synthetic protease circuits to realize diverse signal processing capabilities, including logic operation and threshold tuning. By linking RELEASE to additional sensing and processing circuits, we can achieve elevated protein secretion in response to "undruggable" oncogene KRAS mutants. RELEASE should enable the local, programmable delivery of intercellular cues for a broad variety of fields such as neurobiology, cancer immunotherapy and cell transplantation.


Assuntos
Peptídeo Hidrolases/metabolismo , Transporte Proteico , Biologia Sintética/métodos , Citometria de Fluxo , Células HEK293 , Humanos , Mutação , Peptídeo Hidrolases/genética , Engenharia de Proteínas/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/genética
2.
Nat Commun ; 11(1): 4440, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895374

RESUMO

Traditionally engineered genetic circuits have almost exclusively used naturally occurring transcriptional repressors. Recently, non-natural transcription factors (repressors) have been engineered and employed in synthetic biology with great success. However, transcriptional anti-repressors have largely been absent with regard to the regulation of genes in engineered genetic circuits. Here, we present a workflow for engineering systems of non-natural anti-repressors. In this study, we create 41 inducible anti-repressors. This collection of transcription factors respond to two distinct ligands, fructose (anti-FruR) or D-ribose (anti-RbsR); and were complemented by 14 additional engineered anti-repressors that respond to the ligand isopropyl ß-d-1-thiogalactopyranoside (anti-LacI). In turn, we use this collection of anti-repressors and complementary genetic architectures to confer logical control over gene expression. Here, we achieved all NOT oriented logical controls (i.e., NOT, NOR, NAND, and XNOR). The engineered transcription factors and corresponding series, parallel, and series-parallel genetic architectures represent a nascent anti-repressor based transcriptional programming structure.


Assuntos
Bioengenharia/métodos , Repressores Lac/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Expressão Gênica/fisiologia , Redes Reguladoras de Genes , Repressores Lac/síntese química , Ligantes , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/síntese química , Biologia Sintética/métodos , Fatores de Transcrição/síntese química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA