Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585790

RESUMO

Antibiotic resistance, especially in multidrug-resistant ESKAPE pathogens, remains a worldwide problem. Combination antimicrobial therapies may be an important strategy to overcome resistance and broaden the spectrum of existing antibiotics. However, this strategy is limited by the ability to efficiently screen large combinatorial chemical spaces. Here, we deployed a high-throughput combinatorial screening platform, DropArray, to evaluate the interactions of over 30,000 compounds with up to 22 antibiotics and 6 strains of Gram-negative ESKAPE pathogens, totaling to over 1.3 million unique strain-antibiotic-compound combinations. In this dataset, compounds more frequently exhibited synergy with known antibiotics than single-agent activity. We identified a compound, P2-56, and developed a more potent analog, P2-56-3, which potentiated rifampin (RIF) activity against Acinetobacter baumannii and Klebsiella pneumoniae. Using phenotypic assays, we showed P2-56-3 disrupts the outer membrane of A. baumannii. To identify pathways involved in the mechanism of synergy between P2-56-3 and RIF, we performed genetic screens in A. baumannii. CRISPRi-induced partial depletion of lipooligosaccharide transport genes (lptA-D, lptFG) resulted in hypersensitivity to P2-56-3/RIF treatment, demonstrating the genetic dependency of P2-56-3 activity and RIF sensitization on lpt genes in A. baumannii. Consistent with outer membrane homeostasis being an important determinant of P2-56-3/RIF tolerance, knockout of maintenance of lipid asymmetry complex genes and overexpression of certain resistance-nodulation-division efflux pumps - a phenotype associated with multidrug-resistance - resulted in hypersensitivity to P2-56-3. These findings demonstrate the immense scale of phenotypic antibiotic combination screens using DropArray and the potential for such approaches to discover new small molecule synergies against multidrug-resistant ESKAPE strains.

2.
mBio ; 15(3): e0015924, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38364199

RESUMO

The rise in infections caused by multidrug-resistant (MDR) bacteria has necessitated a variety of clinical approaches, including the use of antibiotic combinations. Here, we tested the hypothesis that drug-drug interactions vary in different media, and determined which in vitro models best predict drug interactions in the lungs. We systematically studied pair-wise antibiotic interactions in three different media, CAMHB, (a rich lab medium standard for antibiotic susceptibility testing), a urine mimetic medium (UMM), and a minimal medium of M9 salts supplemented with glucose and iron (M9Glu) with three Gram-negative ESKAPE pathogens, Acinetobacter baumannii (Ab), Klebsiella pneumoniae (Kp), and Pseudomonas aeruginosa (Pa). There were pronounced differences in responses to antibiotic combinations between the three bacterial species grown in the same medium. However, within species, PaO1 responded to drug combinations similarly when grown in all three different media, whereas Ab17978 and other Ab clinical isolates responded similarly when grown in CAMHB and M9Glu medium. By contrast, drug interactions in Kp43816, and other Kp clinical isolates poorly correlated across different media. To assess whether any of these media were predictive of antibiotic interactions against Kp in the lungs of mice, we tested three antibiotic combination pairs. In vitro measurements in M9Glu, but not rich medium or UMM, predicted in vivo outcomes. This work demonstrates that antibiotic interactions are highly variable across three Gram-negative pathogens and highlights the importance of growth medium by showing a superior correlation between in vitro interactions in a minimal growth medium and in vivo outcomes. IMPORTANCE: Drug-resistant bacterial infections are a growing concern and have only continued to increase during the SARS-CoV-2 pandemic. Though not routinely used for Gram-negative bacteria, drug combinations are sometimes used for serious infections and may become more widely used as the prevalence of extremely drug-resistant organisms increases. To date, reliable methods are not available for identifying beneficial drug combinations for a particular infection. Our study shows variability across strains in how drug interactions are impacted by growth conditions. It also demonstrates that testing drug combinations in tissue-relevant growth conditions for some strains better models what happens during infection and may better inform combination therapy selection.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Camundongos , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Interações Medicamentosas , Klebsiella pneumoniae , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
3.
STAR Protoc ; 4(3): 102442, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549035

RESUMO

Biosafety level 3 decontamination precautions motivate measuring microbial colonies using consumable photography instead of expensive automated plate counters or smartphones, and assaying drug treatments-with multiple concentrations per treatment, replicates, and controls-produces hundreds of images. Here, we present a protocol for semi-automated image analysis by hand-tuning three parameters. The parameters control for non-uniform colony growth and artifacts such as lid condensation, reflections, and plating streaks. We describe steps to prepare images, tune parameters, and plot dose-response relationships. For complete details on the use and execution of this protocol, please refer to Larkins-Ford et al.1.


Assuntos
Contenção de Riscos Biológicos , Laboratórios , Contagem de Colônia Microbiana , Processamento de Imagem Assistida por Computador/métodos , Células-Tronco
4.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37292927

RESUMO

The ability of bacterial pathogens to regulate growth is crucial to control homeostasis, virulence, and drug response. Yet, we do not understand the growth and cell cycle behaviors of Mycobacterium tuberculosis (Mtb), a slow-growing pathogen, at the single-cell level. Here, we use time-lapse imaging and mathematical modeling to characterize these fundamental properties of Mtb. Whereas most organisms grow exponentially at the single-cell level, we find that Mtb exhibits a unique linear growth mode. Mtb growth characteristics are highly variable from cell-to-cell, notably in their growth speeds, cell cycle timing, and cell sizes. Together, our study demonstrates that growth behavior of Mtb diverges from what we have learned from model bacteria. Instead, Mtb generates a heterogeneous population while growing slowly and linearly. Our study provides a new level of detail into how Mtb grows and creates heterogeneity, and motivates more studies of growth behaviors in bacterial pathogens.

5.
Antimicrob Agents Chemother ; 67(7): e0009023, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37278639

RESUMO

Mycobacterium abscessus infections are difficult to treat and are often considered untreatable without tissue resection. Due to the intrinsic drug-resistant nature of the bacteria, combination therapy of three or more antibiotics is recommended. A major challenge in treating M. abscessus infections is the absence of a universal combination therapy with satisfying clinical success rates, leaving clinicians to treat infections using antibiotics lacking efficacy data. We systematically measured drug combinations in M. abscessus to establish a resource of drug interaction data and identify patterns of synergy to help design optimized combination therapies. We measured 191 pairwise drug combination effects among 22 antibacterials and identified 71 synergistic pairs, 54 antagonistic pairs, and 66 potentiator-antibiotic pairs. We found that commonly used drug combinations in the clinic, such as azithromycin and amikacin, are antagonistic in the lab reference strain ATCC 19977, whereas novel combinations, such as azithromycin and rifampicin, are synergistic. Another challenge in developing universally effective multidrug therapies for M. abscessus is the significant variation in drug response between isolates. We measured drug interactions in a focused set of 36 drug pairs across a small panel of clinical isolates with rough and smooth morphotypes. We observed strain-dependent drug interactions that cannot be predicted from single-drug susceptibility profiles or known drug mechanisms of action. Our study demonstrates the immense potential to identify synergistic drug combinations in the vast drug combination space and emphasizes the importance of strain-specific combination measurements for designing improved therapeutic interventions.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Amicacina/farmacologia , Amicacina/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Interações Medicamentosas , Testes de Sensibilidade Microbiana
6.
Expert Opin Drug Discov ; 18(1): 83-97, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36538813

RESUMO

INTRODUCTION: Tuberculosis requires lengthy multi-drug therapy. Mycobacterium tuberculosis occupies different tissue compartments during infection, making drug access and susceptibility patterns variable. Antibiotic combinations are needed to ensure each compartment of infection is reached with effective drug treatment. Despite drug combinations' role in treating tuberculosis, the design of such combinations has been tackled relatively late in the drug development process, limiting the number of drug combinations tested. In recent years, there has been significant progress using in vitro, in vivo, and computational methodologies to interrogate combination drug effects. AREAS COVERED: This review discusses the advances in these methodologies and how they may be used in conjunction with new successful clinical trials of novel drug combinations to design optimized combination therapies for tuberculosis. Literature searches for approaches and experimental models used to evaluate drug combination effects were undertaken. EXPERT OPINION: We are entering an era richer in combination drug effect and pharmacokinetic/pharmacodynamic data, genetic tools, and outcome measurement types. Application of computational modeling approaches that integrate these data and produce predictive models of clinical outcomes may enable the field to generate novel, effective multidrug therapies using existing and new drug combination backbones.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Terapia Combinada , Quimioterapia Combinada
7.
Science ; 378(6624): 1111-1118, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36480634

RESUMO

The widespread use of antibiotics has placed bacterial pathogens under intense pressure to evolve new survival mechanisms. Genomic analysis of 51,229 Mycobacterium tuberculosis (Mtb)clinical isolates has identified an essential transcriptional regulator, Rv1830, herein called resR for resilience regulator, as a frequent target of positive (adaptive) selection. resR mutants do not show canonical drug resistance or drug tolerance but instead shorten the post-antibiotic effect, meaning that they enable Mtb to resume growth after drug exposure substantially faster than wild-type strains. We refer to this phenotype as antibiotic resilience. ResR acts in a regulatory cascade with other transcription factors controlling cell growth and division, which are also under positive selection in clinical isolates of Mtb. Mutations of these genes are associated with treatment failure and the acquisition of canonical drug resistance.


Assuntos
Antibióticos Antituberculose , Proteínas de Bactérias , Farmacorresistência Bacteriana , Evolução Molecular , Mycobacterium tuberculosis , Fatores de Transcrição , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Genômica , Falha de Tratamento , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Farmacorresistência Bacteriana/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/uso terapêutico , Seleção Genética , Proteínas de Bactérias/genética , Fatores de Transcrição/genética
8.
Cell Rep Med ; 3(9): 100737, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36084643

RESUMO

A challenge in tuberculosis treatment regimen design is the necessity to combine three or more antibiotics. We narrow the prohibitively large search space by breaking down high-order drug combinations into drug pair units. Using pairwise in vitro measurements, we train machine learning models to predict higher-order combination treatment outcomes in the relapsing BALB/c mouse model. Classifiers perform well and predict many of the >500 possible combinations among 12 antibiotics to be improved over bedaquiline + pretomanid + linezolid, a treatment-shortening regimen compared with the standard of care in mice. We reformulate classifiers as simple rulesets to reveal guiding principles of constructing combination therapies for both preclinical and clinical outcomes. One example ruleset combines a drug pair that is synergistic in a dormancy model with a pair that is potent in a cholesterol-rich growth environment. These rulesets are predictive, intuitive, and practical, thus enabling rational construction of drug combinations.


Assuntos
Antituberculosos , Tuberculose , Animais , Antituberculosos/uso terapêutico , Combinação de Medicamentos , Linezolida/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Tuberculose/tratamento farmacológico
9.
BMC Microbiol ; 22(1): 140, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590245

RESUMO

BACKGROUND: Bacteria require specialized secretion systems for the export of molecules into the extracellular space to modify their environment and scavenge for nutrients. The ESX-3 secretion system is required by mycobacteria for iron homeostasis. The ESX-3 operon encodes for one cytoplasmic component (EccA3) and five membrane components (EccB3 - EccE3 and MycP3). In this study we sought to identify the sub-cellular location of EccA3 of the ESX-3 secretion system in mycobacteria. RESULTS: Fluorescently tagged EccA3 localized to a single pole in the majority of Mycobacterium smegmatis cells and time-lapse fluorescent microscopy identified this pole as the growing pole. Deletion of ESX-3 did not prevent polar localization of fluorescently tagged EccA3, suggesting that EccA3 unipolar localization is independent of other ESX-3 components. Affinity purification - mass spectrometry was used to identify EccA3 associated proteins which may contribute to the localization of EccA3 at the growing pole. EccA3 co-purified with fatty acid metabolism proteins (FAS, FadA3, KasA and KasB), mycolic acid synthesis proteins (UmaA, CmaA1), cell division proteins (FtsE and FtsZ), and cell shape and cell cycle proteins (MurS, CwsA and Wag31). Secretion system related proteins Ffh, SecA1, EccA1, and EspI were also identified. CONCLUSIONS: Time-lapse microscopy demonstrated that EccA3 is located at the growing pole in M. smegmatis. The co-purification of EccA3 with proteins known to be required for polar growth, mycolic acid synthesis, the Sec secretion system (SecA1), and the signal recognition particle pathway (Ffh) also suggests that EccA3 is located at the site of active cell growth.


Assuntos
Mycobacterium tuberculosis , Mycobacterium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Ácidos Micólicos/metabolismo , Óperon
10.
Nat Rev Microbiol ; 20(9): 529-541, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35365812

RESUMO

The remarkable ability of Mycobacterium tuberculosis to survive attacks from the host immune response and drug treatment is due to the resilience of a few bacilli rather than a result of survival of the entire population. Maintenance of mycobacterial subpopulations with distinct phenotypic characteristics is key for survival in the face of dynamic and variable stressors encountered during infection. Mycobacterial populations develop a wide range of phenotypes through an innate asymmetric growth pattern and adaptation to fluctuating microenvironments during infection that point to heterogeneity being a vital survival strategy. In this Review, we describe different types of mycobacterial heterogeneity and discuss how heterogeneity is generated and regulated in response to environmental cues. We discuss how this heterogeneity may have a key role in recording memory of their environment at both the single-cell level and the population level to give mycobacterial populations plasticity to withstand complex stressors.


Assuntos
Mycobacterium tuberculosis , Adaptação Fisiológica , Humanos , Mycobacterium tuberculosis/genética , Fenótipo
11.
Front Cell Infect Microbiol ; 12: 1085946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733851

RESUMO

Combination therapy is necessary to treat tuberculosis to decrease the rate of disease relapse and prevent the acquisition of drug resistance, and shorter regimens are urgently needed. The adaptation of Mycobacterium tuberculosis to various lesion microenvironments in infection induces various states of slow replication and non-replication and subsequent antibiotic tolerance. This non-heritable tolerance to treatment necessitates lengthy combination therapy. Therefore, it is critical to develop combination therapies that specifically target the different types of drug-tolerant cells in infection. As new tools to study drug combinations earlier in the drug development pipeline are being actively developed, we must consider how to best model the drug-tolerant cells to use these tools to design the best antibiotic combinations that target those cells and shorten tuberculosis therapy. In this review, we discuss the factors underlying types of drug tolerance, how combination therapy targets these populations of bacteria, and how drug tolerance is currently modeled for the development of tuberculosis multidrug therapy. We highlight areas for future studies to develop new tools that better model drug tolerance in tuberculosis infection specifically for combination therapy testing to bring the best drug regimens forward to the clinic.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/uso terapêutico , Quimioterapia Combinada , Hansenostáticos/farmacologia , Hansenostáticos/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tolerância a Medicamentos
12.
Cell Chem Biol ; 29(5): 883-896.e5, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34599873

RESUMO

The identification and validation of a small molecule's targets is a major bottleneck in the discovery process for tuberculosis antibiotics. Activity-based protein profiling (ABPP) is an efficient tool for determining a small molecule's targets within complex proteomes. However, how target inhibition relates to biological activity is often left unexplored. Here, we study the effects of 1,2,3-triazole ureas on Mycobacterium tuberculosis (Mtb). After screening ∼200 compounds, we focus on 4 compounds that form a structure-activity series. The compound with negligible activity reveals targets, the inhibition of which is functionally less relevant for Mtb growth and viability, an aspect not addressed in other ABPP studies. Biochemistry, computational docking, and morphological analysis confirms that active compounds preferentially inhibit serine hydrolases with cell wall and lipid metabolism functions and that disruption of the cell wall underlies biological activity. Our findings show that ABPP identifies the targets most likely relevant to a compound's antibacterial activity.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Antituberculosos/farmacologia , Parede Celular , Humanos , Proteoma
13.
PNAS Nexus ; 1(4): pgac130, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36714853

RESUMO

Infections caused by Mycobacterium abscessus are difficult to treat due to its intrinsic resistance to most antibiotics. Formation of biofilms and the capacity of M. abscessus to survive inside host phagocytes further complicate eradication. Herein, we explored whether addition of a carbamate-linked group at the C25 position of rifamycin SV blocks enzymatic inactivation by ArrMab, an ADP-ribosyltransferase conferring resistance to rifampicin (RMP). Unlike RMP, 5j, a benzyl piperidine rifamycin derivative with a morpholino substituted C3 position and a naphthoquinone core, is not modified by purified ArrMab. Additionally, we show that the ArrMab D82 residue is essential for catalytic activity. Thermal profiling of ArrMab in the presence of 5j, RMP, or rifabutin shows that 5j does not bind to ArrMab. We found that the activity of 5j is comparable to amikacin against M. abscessus planktonic cultures and pellicles. Critically, 5j also exerts potent antimicrobial activity against M. abscessus in human macrophages and shows synergistic activity with amikacin and azithromycin.

14.
Curr Opin Microbiol ; 64: 68-75, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628295

RESUMO

Interest in antibiotic combination therapy is increasing due to antimicrobial resistance and a slowing antibiotic pipeline. However, aside from specific indications, combination therapy in the clinic is often not administered systematically; instead, it is used at the physician's discretion as a bet-hedging mechanism to increase the chances of appropriately targeting a pathogen(s) with an unknown antibiotic resistance profile. Some recent clinical trials have been unable to demonstrate superior efficacy of combination therapy over monotherapy. Other trials have shown a benefit of combination therapy in defined circumstances consistent with recent studies indicating that factors including species, strain, resistance profile, and microenvironment affect drug combination efficacy and drug interactions. In this review, we discuss how a careful study design that takes these factors into account, along with the different drug interaction and potency metrics for assessing combination performance, may provide the necessary insight to understand the best clinical use-cases for combination therapy.


Assuntos
Antibacterianos , Laboratórios , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Terapia Combinada , Interações Medicamentosas , Quimioterapia Combinada
15.
Cell Syst ; 12(11): 1046-1063.e7, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34469743

RESUMO

Lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis. However, we lack well-validated, high-throughput in vitro models that predict animal outcomes. Here, we provide an extensible approach to rationally prioritize combination therapies for testing in in vivo mouse models of tuberculosis. We systematically measured Mycobacterium tuberculosis response to all two- and three-drug combinations among ten antibiotics in eight conditions that reproduce lesion microenvironments, resulting in >500,000 measurements. Using these in vitro data, we developed classifiers predictive of multidrug treatment outcome in a mouse model of disease relapse and identified ensembles of in vitro models that best describe in vivo treatment outcomes. We identified signatures of potencies and drug interactions in specific in vitro models that distinguish whether drug combinations are better than the standard of care in two important preclinical mouse models. Our framework is generalizable to other difficult-to-treat diseases requiring combination therapies. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/uso terapêutico , Combinação de Medicamentos , Camundongos , Resultado do Tratamento , Tuberculose/tratamento farmacológico
16.
Methods Mol Biol ; 2314: 703-713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235676

RESUMO

Treatment of tuberculosis necessitates combination therapy. Therefore, development of new tuberculosis therapies should consider multidrug effects because specific combinations may improve or reduce treatment efficacy through synergistic or antagonistic drug interactions, respectively. The standard assay of drug interactions is a checkerboard assay, wherein the drug-dose combinations are well-sampled across broad dose ranges. However, measuring three or more drugs in combination with a checkerboard assay is impractical due to the high number of measurements. We describe a protocol for efficient and quantitative measurement of drug interactions called diagonal measurement of n-way drug interactions (DiaMOND). DiaMOND is a geometric optimization of the checkerboard assay, using only the diagonal and axes of the checkerboard. This protocol describes how to perform DiaMOND experiments and analysis for Mycobacterium tuberculosis growth inhibition in standard growth conditions. As a guide on how to customize the DiaMOND assay, this protocol includes notes to modify the procedures for other growth conditions and outcome measures.


Assuntos
Antituberculosos/farmacologia , Interações Medicamentosas , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/tratamento farmacológico , Combinação de Medicamentos , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/microbiologia
18.
Antimicrob Agents Chemother ; 65(9): e0002421, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34228540

RESUMO

SQ109 is a novel well-tolerated drug candidate in clinical development for the treatment of drug-resistant tuberculosis (TB). It is the only inhibitor of the MmpL3 mycolic acid transporter in clinical development. No SQ109-resistant mutant has been directly isolated thus far in vitro, in mice, or in patients, which is tentatively attributed to its multiple targets. It is considered a potential replacement for poorly tolerated components of multidrug-resistant TB regimens. To prioritize SQ109-containing combinations with the best potential for cure and treatment shortening, one must understand its contribution against different bacterial populations in pulmonary lesions. Here, we have characterized the pharmacokinetics of SQ109 in the rabbit model of active TB and its penetration at the sites of disease-lung tissue, cellular and necrotic lesions, and caseum. A two-compartment model with first-order absorption and elimination described the plasma pharmacokinetics. At the human-equivalent dose, parameter estimates fell within the ranges published for preclinical species. Tissue concentrations were modeled using an "effect" compartment, showing high accumulation in lung and cellular lesion areas with penetration coefficients in excess of 1,000 and lower passive diffusion in caseum after 7 daily doses. These results, together with the hydrophobic nature and high nonspecific caseum binding of SQ109, suggest that multiweek dosing would be required to reach steady state in caseum and poorly vascularized compartments, similar to bedaquiline. Linking lesion pharmacokinetics to SQ109 potency in assays against replicating, nonreplicating, and intracellular M. tuberculosis showed SQ109 concentrations markedly above pharmacokinetic-pharmacodynamic targets in lung and cellular lesions throughout the dosing interval.


Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Antituberculosos/uso terapêutico , Humanos , Camundongos , Coelhos , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
19.
CPT Pharmacometrics Syst Pharmacol ; 9(10): 561-570, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860732

RESUMO

Anticancer efficacy is driven not only by dose but also by frequency and duration of treatment. We describe a multiscale model combining cell cycle, cellular heterogeneity of B-cell lymphoma 2 family proteins, and pharmacology of AZD5991, a potent small-molecule inhibitor of myeloid cell leukemia 1 (Mcl-1). The model was calibrated using in vitro viability data for the MV-4-11 acute myeloid leukemia cell line under continuous incubation for 72 hours at concentrations of 0.03-30 µM. Using a virtual screen, we identified two schedules as having significantly different predicted efficacy and showed experimentally that a "short" schedule (treating cells for 6 of 24 hours) is significantly better able to maintain the rate of cell kill during treatment than a "long" schedule (18 of 24 hours). This work suggests that resistance can be driven by heterogeneity in protein expression of Mcl-1 alone without requiring mutation or resistant subclones and demonstrates the utility of mathematical models in efficiently identifying regimens for experimental exploration.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Compostos Macrocíclicos/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Esquema de Medicação , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/patologia , Compostos Macrocíclicos/administração & dosagem , Compostos Macrocíclicos/uso terapêutico , Camundongos , Modelos Animais , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
20.
Proc Natl Acad Sci U S A ; 117(31): 18744-18753, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32680963

RESUMO

Morphological profiling is a method to classify target pathways of antibacterials based on how bacteria respond to treatment through changes to cellular shape and spatial organization. Here we utilized the cell-to-cell variation in morphological features of Mycobacterium tuberculosis bacilli to develop a rapid profiling platform called Morphological Evaluation and Understanding of Stress (MorphEUS). MorphEUS classified 94% of tested drugs correctly into broad categories according to modes of action previously identified in the literature. In the other 6%, MorphEUS pointed to key off-target activities. We observed cell wall damage induced by bedaquiline and moxifloxacin through secondary effects downstream from their main target pathways. We implemented MorphEUS to correctly classify three compounds in a blinded study and identified an off-target effect for one compound that was not readily apparent in previous studies. We anticipate that the ability of MorphEUS to rapidly identify pathways of drug action and the proximal cause of cellular damage in tubercle bacilli will make it applicable to other pathogens and cell types where morphological responses are subtle and heterogeneous.


Assuntos
Antituberculosos/farmacologia , Descoberta de Drogas/métodos , Mycobacterium tuberculosis , Software , Parede Celular/efeitos dos fármacos , Diarilquinolinas , Ensaios de Triagem em Larga Escala , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA