Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EJNMMI Phys ; 9(1): 24, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347483

RESUMO

PURPOSE: Recent reports personalizing the administered activity (AA) of each cycle of peptide receptor radionuclide therapy based on the predicted absorbed dose (AD) to the kidneys (dose-limiting organ) have been promising. Assuming identical renal pharmacokinetics for each cycle is pragmatic, however it may lead to over- or under-estimation of the optimal AA. Here, we investigate the influence that earlier cycles of [177Lu]Lu-DOTATATE had on the biokinetics and AD of subsequent cycles in a recent clinical trial that evaluated the safety and activity of [177Lu]Lu-DOTATATE in pediatric neuroblastoma (NBL). We investigated whether predictions based on an assumption of unchanging AD per unit AA (Gy/GBq) prove robust to cyclical changes in biokinetics. METHODS: A simulation study, based on dosimetry data from six children with NBL who received four-cycles of [177Lu]Lu-DOTATATE in the LuDO trial (ISRCTN98918118), was performed to explore the effect of variable biokinetics on AD. In the LuDO trial, AA was adapted to the patient's weight and SPECT/CT-based dosimetry was performed for the kidneys and tumour after each cycle. The largest tumour mass was selected for dosimetric analysis in each case. RESULTS: The median tumour AD per cycle was found to decrease from 15.6 Gy (range 8.12-26.4) in cycle 1 to 11.4 Gy (range 9.67-28.8), 11.3 Gy (range 2.73-32.9) and 4.3 Gy (range 0.72-20.1) in cycles 2, 3 and 4, respectively. By the fourth cycle, the median of the ratios of the delivered AD (ADD) and the predicted (or "expected") AD (ADE) (which was based on an assumption of stable biokinetics from the first cycle onwards) were 0.16 (range 0.02-0.92, p = 0.013) for the tumour and 1.08 (range 0.84-1.76, p > 0.05) for kidney. None of the patients had an objective response at 1 month follow up. CONCLUSION: This study demonstrates variability in Gy/GBq and tumour AD per cycle in children receiving four administrations of [177Lu]Lu-DOTATATE treatment for NBL. NBL is deemed a radiation sensitive tumour; therefore, dose-adaptive treatment planning schemes may be appropriate for some patients to compensate for decreasing tumour uptake as treatment progresses. Trial registration ISRCTN ISRCTN98918118. Registered 20 December 2013 (retrospectively registered).

2.
Front Oncol ; 11: 686235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408979

RESUMO

PURPOSE: Neuroendocrine tumors (NET) are rare cancers with variable behavior. A better understanding of prognosis would aid individualized management. The aim of this hypothesis-generating pilot study was to investigate the prognostic potential of tumor heterogeneity and tracer avidity in NET using texture analysis (TA) of 68Ga-DOTATATE positron emission tomography (PET) and non-enhanced computed tomography (CT) performed at baseline in patients treated with 177Lu-DOTATATE. It aims to justify a larger-scale study to evaluate its clinical value. METHODS: The pretherapy 68Ga-DOTATATE PET-CT scans of 44 patients with metastatic NET (carcinoid, pancreatic, thyroid, head and neck, catecholamine-secreting, and unknown primary NET) treated with 177Lu-DOTATATE were analyzed retrospectively using commercially available texture analysis research software. Image filtration extracted and enhanced objects of different sizes (fine, medium, coarse), then quantified heterogeneity by statistical and histogram-based parameters (mean intensity, standard deviation, entropy, mean of positive pixels, skewness, and kurtosis). Regions of interest were manually drawn around up to five of the most 68Ga-DOTATATE avid lesions for each patient. 68Gallium uptake on PET was quantified as SUVmax and SUVmean. Associations between imaging and clinical markers with progression-free (PFS) and overall survival (OS) were assessed using univariate Kaplan-Meier analysis. Independence of the significant univariate markers of survival was tested using multivariate Cox regression analysis. RESULTS: Measures of heterogeneity (higher kurtosis, higher entropy, and lower skewness) on coarse-texture scale CT and unfiltered PET images predicted shorter PFS (CT coarse kurtosis: p=0.05, PET entropy: p=0.01, PET skewness: p=0.03) and shorter OS (CT coarse kurtosis: p=0.05, PET entropy: p=0.01, PET skewness p=0.02). Conventional PET parameters such as SUVmax and SUVmean showed trends towards predicting outcome but were not statistically significant. Multivariate analysis identified that CT-TA (coarse kurtosis: HR=2.57, 95% CI=1.22-5.38, p=0.013) independently predicted PFS, and PET-TA (unfiltered skewness: HR=9.05, 95% CI=1.19-68.91, p=0.033) independently predicted OS. CONCLUSION: These preliminary data generate a hypothesis that radiomic analysis of neuroendocrine cancer on 68Ga-DOTATATE PET-CT may be of prognostic value and a valuable addition to the assessment of patients.

3.
J Pers Med ; 10(4)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081161

RESUMO

Molecular radiotherapy, or targeted radionuclide therapy, uses systemically administered drugs bearing a suitable radioactive isotope, typically a beta emitter. These are delivered via metabolic or other physiological pathways to cancer cells in greater concentrations than to normal tissues. The absorbed radiation dose in tumour deposits causes chromosomal damage and cell death. A partner radiopharmaceutical, most commonly the same vector labelled with a different radioactive atom, with emissions suitable for gamma camera or positron emission tomography imaging, is used to select patients for treatment and to assess response. The use of these pairs of radio-labelled drugs, one optimised for therapy, the other for diagnostic purposes, is referred to as theragnostics. Theragnostics is increasingly moving away from a fixed number of defined activity administrations, to a much more individualised or personalised approach, with the aim of improving treatment outcomes, and minimising toxicity. There is, however, still significant scope for further progress in that direction. The main tools for personalisation are the following: imaging biomarkers for better patient selection; predictive and post-therapy dosimetry to maximise the radiation dose to the tumour while keeping organs at risk within tolerance limits; imaging for assessment of treatment response; individualised decision making and communication about radiation protection, adjustments for toxicity, inpatient and outpatient care.

4.
Nucl Med Commun ; 41(11): 1169-1177, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32796449

RESUMO

PURPOSE: Iodine-131-labelled meta-iodobenzylguanidine (I-mIBG) and lutetium-177-labelled DOTATATE (Lu-DOTATATE) are used for molecular radiotherapy of metastatic neuroblastoma. These are taken up by the noradrenaline transporter (NAT) and the somatostatin receptor subtype 2 (SSTR-2), respectively. Scintigraphy of iodine-123-labelled meta-iodobenzylguanidine (I-mIBG) and gallium-68 DOTATATE (Ga-DOTATATE) PET are used to select patients for therapy. These demonstrate the extent and location of tumour, and avidity of uptake by cells expressing NAT and SSTR-2, respectively. This study compared the similarities and differences in the anatomical distribution of these two imaging biomarkers in an unselected series of patients with metastatic neuroblastoma undergoing assessment for molecular radiotherapy. METHODS: Paired whole-body planar I-mIBG views and Ga-DOTATATE maximum intensity projection PET scans of metastatic neuroblastoma patients were visually compared. The disease extent was assessed by a semiquantitative scoring method. RESULTS: Paired scans from 42 patients were reviewed. Ga-DOTATATE scans were positive in all patients, I-mIBG scans were negative in two. In two patients, there was a mismatch, with some lesions identified only on the I-mIBG scan, and others visible only on the Ga-DOTATATE scan. CONCLUSION: Ga-DOTATATE and I-mIBG scans yield complementary information. For a more comprehensive assessment, consideration could be given to the use of both I-mIBG and Ga-DOTATATE imaging scans. Because of the heterogeneity of distribution of molecular targets revealed by these techniques, a combination of both I-mIBG and Lu-DOTATATE molecular radiotherapy may possibly be more effective than either alone.


Assuntos
3-Iodobenzilguanidina , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/patologia , Octreotida/análogos & derivados , Compostos Organometálicos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Neuroblastoma/radioterapia , Sensibilidade e Especificidade , Imagem Corporal Total
5.
Eur J Nucl Med Mol Imaging ; 47(10): 2348-2357, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32157433

RESUMO

PURPOSE: The objective of this phase IIa, open-label, single-centre, single-arm, two-stage clinical trial was to evaluate the safety and activity of 177-lutetium DOTATATE (LuDO) molecular radiotherapy in neuroblastoma. METHODS: Children with relapsed or refractory metastatic high-risk neuroblastoma were treated with up to four courses of LuDO. The administered activity was 75 to 100 MBq kg-1 per course, spaced at 8- to 12-week intervals. Outcomes were assessed by the International Neuroblastoma Response Criteria (primary outcome), progression-free survival (PFS), and overall survival (OS). RESULTS: The trial recruited 21 patients; eight received the planned four courses. There was dose-limiting haematologic toxicity in one case, but no other significant haematologic or renal toxicities. None of 14 evaluable patients had an objective response at 1 month after completion of treatment (Wilson 90% CI 0.0, 0.16; and 95% CI is 0.0, 0.22). The trial did not therefore proceed to the second stage. The median PFS was 2.96 months (95% CI 1.71, 7.66), and the median OS was 13.0 months (95% CI 2.99, 21.52). CONCLUSION: In the absence of any objective responses, the use of LuDO as a single agent at the dose schedule used in this study is not recommended for the treatment of neuroblastoma. There are several reasons why this treatment schedule may not have resulted in objective responses, and as other studies do show benefit, the treatment should not be regarded as being of no value. Further trials designed to overcome this schedule's limitations are required. TRIAL REGISTRATION: ISRCTN98918118; URL: https://www.isrctn.com/search?q=98918118.


Assuntos
Lutécio , Neuroblastoma , Protocolos de Quimioterapia Combinada Antineoplásica , Criança , Radioisótopos de Gálio , Humanos , Lutécio/efeitos adversos , Neuroblastoma/radioterapia , Compostos Radiofarmacêuticos/uso terapêutico
6.
Phys Med Biol ; 62(1): 17-30, 2017 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-27973344

RESUMO

Iodine-123 mIBG imaging is widely regarded as a gold standard for diagnostic studies of neuroblastoma and adult neuroendocrine cancer although the optimal collimator for tumour imaging remains undetermined. Low-energy (LE) high-resolution (HR) collimators provide superior spatial resolution. However due to septal penetration of high-energy photons these provide poorer contrast than medium-energy (ME) general-purpose (GP) collimators. LEGP collimators improve count sensitivity. The aim of this study was to objectively compare the lesion detection efficiency of each collimator to determine the optimal collimator for diagnostic imaging. The septal penetration and sensitivity of each collimator was assessed. Planar images of the patient abdomen were simulated with static scans of a Liqui-Phil™ anthropomorphic phantom with lesion-shaped inserts, acquired with LE and ME collimators on 3 different manufacturers' gamma camera systems (Skylight (Philips), Intevo (Siemens) and Discovery (GE)). Two-hundred normal and 200 single-lesion abnormal images were created for each collimator. A channelized Hotelling observer (CHO) was developed and validated to score the images for the likelihood of an abnormality. The areas under receiver-operator characteristic (ROC) curves, Az, created from the scores were used to quantify lesion detectability. The CHO ROC curves for the LEHR collimators were inferior to the GP curves for all cameras. The LEHR collimators resulted in statistically significantly smaller Azs (p < 0.05), of on average 0.891 ± 0.004, than for the MEGP collimators, 0.933 ± 0.004. In conclusion, the reduced background provided by MEGP collimators improved 123I mIBG image lesion detectability over LEHR collimators that provided better spatial resolution.


Assuntos
3-Iodobenzilguanidina , Cintilografia/métodos , Criança , Humanos , Neuroblastoma/diagnóstico por imagem , Imagens de Fantasmas , Fótons , Curva ROC , Cintilografia/instrumentação
7.
Nucl Med Commun ; 34(11): 1116-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056385

RESUMO

INTRODUCTION: A three-dimensional model-based resolution recovery (RR) reconstruction algorithm that compensates for collimator-detector response, resulting in an improvement in reconstructed spatial resolution and signal-to-noise ratio of single-photon emission computed tomography (SPECT) images, was tested. The software is said to retain image quality even with reduced acquisition time. Clinically, any improvement in patient throughput without loss of quality is to be welcomed. Furthermore, future restrictions in radiotracer supplies may add value to this type of data analysis. AIM: The aims of this study were to assess improvement in image quality using the software and to evaluate the potential of performing reduced time acquisitions for bone and parathyroid SPECT applications. MATERIALS AND METHODS: Data acquisition was performed using the local standard SPECT/CT protocols for 99mTc-hydroxymethylene diphosphonate bone and 99mTc-methoxyisobutylisonitrile parathyroid SPECT imaging. The principal modification applied was the acquisition of an eight-frame gated data set acquired using an ECG simulator with a fixed signal as the trigger. This had the effect of partitioning the data such that the effect of reduced time acquisitions could be assessed without conferring additional scanning time on the patient. The set of summed data sets was then independently reconstructed using the RR software to permit a blinded assessment of the effect of acquired counts upon reconstructed image quality as adjudged by three experienced observers. Data sets reconstructed with the RR software were compared with the local standard processing protocols; filtered back-projection and ordered-subset expectation-maximization. RESULTS: Thirty SPECT studies were assessed (20 bone and 10 parathyroid). The images reconstructed with the RR algorithm showed improved image quality for both full-time and half-time acquisitions over local current processing protocols (P<0.05). CONCLUSION: The RR algorithm improved image quality compared with local processing protocols and has been introduced into routine clinical use. SPECT acquisitions are now acquired at half of the time previously required. The method of binning the data can be applied to any other camera system to evaluate the reduction in acquisition time for similar processes. The potential for dose reduction is also inherent with this approach.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Software , Tomografia Computadorizada de Emissão de Fóton Único , Adulto , Idoso , Ossos do Pé/diagnóstico por imagem , Humanos , Vértebras Lombares/diagnóstico por imagem , Pessoa de Meia-Idade , Glândulas Paratireoides/diagnóstico por imagem , Compostos Radiofarmacêuticos , Tecnécio , Vértebras Torácicas/diagnóstico por imagem , Fatores de Tempo , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA